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Abstract⎯A new approach to automatic solar disk state detection by all-sky images using machine learning
methods is developed and implemented. The efficiency of the most widely used machine learning algorithms
is analyzed. The effect of reducing the dimensionality of the feature space on the classification accuracy is
estimated. The multilayer artificial neural network model has shown the best accuracy in terms of the true
score. The operation result demonstrates the effectiveness of machine learning methods applied to solar disk
state detection by all-sky images.
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INTRODUCTION

A number of algorithms [10, 12, 13] that yield
biased estimates compared with observer evidence [1]
are commonly used for automatic estimation of the
total cloud cover (TCC) using digital all-sky images
(Fig. 1). In [1], it was demonstrated that one of the
important factors limiting the accuracy of TCC esti-
mation is the solar disk state (SDS), shown in (Fig. 1).
The SDS is also an important characteristic that affects
the estimation of short-wavelength radiation fluxes
incoming to the ocean surface and is a part of standard
meteorological and actinometrical observations.

The SDS is estimated visually during marine and
terrestrial observations [3]. According to the method
[3], the SDS is divided into four classes: –1 (cloudy,
the solar disk is not visible because of dense clouds),
0 (the Sun shines weakly; it can be seen, but objects do
not cast shadows, the so-called zero degree Sun),
1 (the Sun shines through clouds, fog, smoke, and
dust; objects cast shadows, the so-called first-degree
Sun), 2 (there are no clouds, fog, smoke, or dust on the
solar disk or in a 5° area from its center, the so-called
squared Sun). Automatic and expert SDS detection
from an all-sky image is hampered by the fact that there
are no objects or their shadows in the frame. In order to
estimate an operator’s ability to detect the SDS from the
photograph, tests were carried out on the sample bal-
anced by SDS classes (1600 total images). As part of the
test, human estimation from digital all-sky images was
compared with observer evidence obtained in field
conditions. It was taken into account that in certain
cases, related SDS classes (0 and 1, 1 and 2) are not
clearly distinguishable in field conditions. The
described test showed that an expert can determine the

SDS in a laboratory, i.e., from the information con-
veyed by the image without actual observation.

Assuming that the SDS determines the statistical
characteristics of the image color fields and fields of
the synthetic GrIx index (the so-called pixel grayness
rate index) proposed in [1], we formed a set of numer-
ical features on which the problem of automatic clas-
sification by modern machine learning methods is
solved with an accuracy higher than the random selec-
tion accuracy. Some of the considered algorithms
make it possible to achieve over 96% accuracy in terms
of the true score. Taking into account the clustering
result of the set of objects (digital all-sky images) pre-
sented in [1], a compactness hypothesis was formu-
lated in order to correctly use machine learning meth-
ods: the objects belonging to the same SDS class form
subsets compactly localized in the predictor space.

FORMULATION OF THE PROBLEM 
AND INITIAL DATA

The problem of SDS detection from an all-sky
image is formulated as classification of images into
four classes [3]. In this formulation, the model train-
ing set is prepared by experts during field observations
and in a laboratory. Therefore, the problem is to select
and optimize the parameters of the model from a fam-
ily of machine learning algorithms that makes it possi-
ble to attribute a new independent object (a digital all-
sky image) to one of the SDS classes.

In this paper, the datasets obtained during field
observations and by independent SDS estimation by
three experts from the images were used to generate
the training set. Original photographs were obtained
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Fig. 1. Digital all-sky image.

by the TCC estimation unit [1] during cruise AI-49 on
the R/V Akademik Ioffe and during the cruise 31 of the
R/V Akademik Nikolai Strakhov (Fig. 2) with a record-
ing period of 20 s. Related field observations were car-
ried out with a period of 1 h during daylight hours. The
readings from observers were assumed to be accurate
SDS classes for images separated in time by less than
5 min from the observation time. At the preprocess-
ing stage, emission objects were filtered for each of
the numerical features. The total dataset size was
28724 objects including 15511 observation data and
13213 laboratory estimations. Figure 2 shows the
resulting distribution of objects in the dataset by SDS
classes. This distribution is uneven. Thus, the classes
were balanced in order to generate training subsets.
Two methods were used: duplication of samples of
rare classes with noise addition to predictors and cut-
ting of the volume of frequent classes. None of these
methods showed a decisive advantage over the other
in terms of the accuracy of the models.

The fields of the red (R), green (G), and blue (B)
image channels in the RGB color model [9], the field
of pixel brightness (Y), and the synthetic GrIx index
calculated for each point of the image by the follow-

ing formula were used to generate the numeric pre-
dictor space:

(1)

where StdDev(R, G, B) is the standard deviation of a
series of values (R, G, B).

In the above fields, the following statistics were cal-
culated: the minimum and maximum values, arithme-
tic mean, empirical central distribution moments
(variance, skewness, and kurtosis), the standard devi-
ation, the 5th–95th percentiles in increments of 5 (5,
10 … 95), the 99the percentile, and the mean square
over the field. In addition, the height and azimuth of
the Sun were used. A Euclidean metric of distances
between events in the feature space was selected. Thus,
a 142-dimensional space was generated by the above-
listed real variables.

The most popular algorithms were used to compare
the classification accuracy:

—Linear discriminant analysis (LDA) method [7].

—Random forests (RF) method [4, 6].

( )= − , ,
1 ,
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—Gradient boosting trees (GBT) method [5, 8].
—Deep artificial neural network (DANN) method

[2, 5].
Each of these families of machine learning models

has its own approach to feature significance estima-
tion. For the families of the LDA, RF, and GBT algo-
rithms, feature ranking by significance estimation was
used. The effect of dimensionality N of the space of
the most significant predictors on the classification
accuracy was investigated. In the case of the DANN
model, the optimal brain damage (OBD) approach
[11] for the layer of network input parameters was used
to estimate feature significance.

Control and selection of the hyperparameters of
models by the cross-validation method in stratified
form with division into ten blocks were used for reli-
able estimation of accuracy and control of errors
during training and to avoid overfit.

MODEL ACCURACY ASSESSMENT
The accuracy of models was assessed using a hold-

out subset in terms of the true score:

(2)

where Tc is the number of classifier responses that
coincide with expert responses, and Fc is the number
of wrong classifier responses. The hold-out subset
amounted to 25% of the total set of events. Figure 3
shows the dependence of the accuracy Acc of the LDA,
GBM, and RF models on the dimensionality N of the
space of the most significant numerical features.

=
+

,TcAcc
Tc Fc

For the LDA family models, the accuracy did not
exceed Acc = 87% irrespective of the composition of
predictors. The best accuracy obtained using the RF
family models with a hold-out subset was Acc = 93.6%.
For the GBT family models, in some cases an accu-
racy of Acc = 94% was achieved. For these algorithms,
the increase in accuracy Acc with increasing dimen-
sionality N of the space of real predictors is signifi-
cantly slowed, since N = 20 (Fig. 3). Thus, for the

Fig. 2. (1) Route of cruise 31 of R/V Akademik Nikolai Strakhov from December 15, 2015, to January 21, 2016; (2) route of
cruise AI-49 on R/V Akademik Ioffe from June 12, 2015, to July 2, 2015, and (inset) distribution of objects of training set by
SDS classes. 
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Fig. 3. Classification accuracy in terms of Acc true score as
a function of dimensionality N of space of numerical fea-
tures for models of LDA, GBM, and RF families. In accu-
racy graph of LDA family models, gray fill indicates confi-
dence intervals at each value N with 95% confidence level.
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LDA, RF, and GBT models, using more than 20 of the
most significant features in the SDS detection prob-
lem makes no practical sense.

DANN FAMILY MODELS

An alternative SDS detection method is based on
fully connected deep artificial neural networks [2]. An
accuracy of Acc = 96.42% was achieved with DANN
family algorithms for the full set of features. Figure 4a
show, respectively, the distribution of response devia-
tions and the confusion matrix of the best obtained
classifiers compared with observer readings.

At the intermediate training stage, the OBD
approach [11] is commonly used to estimate the fea-
ture significance in the case of DANN family models.
This approach does not make it possible to plot the
resulting accuracy Acc versus N in the case of an accu-
mulative increase in the dimensionality of the predic-
tor space. However, the OBD method makes it possi-
ble to estimate the significance of each feature sepa-
rately. The following predictors showed the greatest
significance (with a loss of more than 5% of Acc in the
OBD approach) in descending order: the asymmetry
coefficient of the fields and G and Y, the dispersion of
R values, and 70th, 15th, 20th, 80th, 75th, 25th, 5th,
35th, and 30th GrIx percentiles. Thus, the GrIx field is

an important variable in SDS classification from all-
sky images over the ocean.

The OBD approach implies the possibility of addi-
tional training of the DANN model after the exclusion
of m predictors with the lowest significance. Figure 4
shows the dependence of accuracy Acc on m excluded
features after such a procedure. This graph shows that
after additional training on some training subsamples,
in the case of reduction of space dimensionality N, it
is possible to obtain a classification accuracy compa-
rable to the quality with the full set of predictors for
N = 142. In some cases, the model accuracy on the
hold-out subset can exceed the basic one after addi-
tional training. However, the general tendency shows
that features with a minimum significance estimate
should be excluded only within 10–15 predictors with-
out significant loss of accuracy (over 1%).

CONCLUSIONS

The results show that machine learning methods
can be effectively used for SDS detection from all-sky
images over the ocean. High accuracy is achieved with a
space of numerical features generated by the statistics of
image color fields and the synthetic GrIx index [1], as
well as additional predictors calculated based on the
coordinates and time of the photo shooting.

Fig. 4. (a) Distribution of response deviations of best classifier of DANN family compared with observer responses. Confusion
matrix of best classifier of DANN family can be found in inset. (b) Accuracy of DANN family models in terms of true score Acc
within OBD approach after exclusion of m minimum significant predictors. Gray fill indicates confidence intervals Acc on each
value m with 95% confidence level. 
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It should be noted that the limited accuracy in the
SDS detection by the observer can introduce uncer-
tainty in the proposed method. In addition, the accu-
racy is likely to decrease under shooting conditions
that are poorly represented in the training set (e.g., a
strong aerosol or dust pollution of the atmosphere).

In the considered problem, the best accuracy in
terms of the true score are given by the DANN family
models [2], where the image classification accuracy
reaches Acc = 96.42%. Simultaneously, the field of the
GrIx index [1] is one of the most significant variables.
The general tendency of accuracy deterioration as pre-
dictors are excluded in DANN family models suggests
the futility of reducing the dimensionality of the fea-
ture space.

High classification accuracy using machine learn-
ing algorithms confirms our hypothesis of compact-
ness for objects (digital all-sky images) on the gener-
ated space of real predictors, which makes it possible
to assume the effectiveness of the proposed methods
for similar problems, such as estimation of the total
cloud cover, classification of observed cloud cover
types, etc.
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