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Meeting Summary

The Third ATMIP Workshop
What: Over 30 participants from multiple universities and research institutions met to discuss 

new results from the Atmospheric River Tracking Method Intercomparison Project 
(ARTMIP).

When: 16–18 October 2019
Where: Berkeley, California
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Atmospheric rivers (ARs) are increasingly recognized globally as an important weather 
phenomenon associated with extreme precipitation. There is a substantial body 
of literature indicating that ARs are responsible for a large fraction of wet-season 

precipitation on western coasts (Rutz et al. 2019) and that they can cause large changes in 
snowpack (both positive and negative; Guan et al. 2010; Chen et al. 2019). Individual ARs 
and collections of ARs can bring large amounts of precipitation that drive floods and other 
storm-related hazards (Ralph et al. 2006, 2019a). ARs are a significant factor for water and 
associated water systems in the vicinity of western coasts (Gao et al. 2016; Ralph et al. 2019b). 
It is increasingly evident that they have major impacts on the energy and water budgets of the 
cryosphere: including mountains (Chen et al. 2019) and high-latitude regions (Gorodetskaya 
et al. 2014). These research advances hinge on technical advances in tracking ARs in 
observations, reanalyses, and climate model simulations and on understanding uncertainties 
associated with different tracking methods. In parallel with the recent increase in research 
activity around ARs, an increasing number of research groups have developed unique methods 
for tracking ARs (Shields et al. 2019).

The Atmospheric River Tracking Intercomparison Project (ARTMIP) was created to design 
a set of experiments that could quantify the uncertainty associated with AR tracking (Shields 
et al. 2018; Rutz et al. 2019). The concept of a multitiered experimental approach, based on 
tracking ARs across common datasets, resulted from the First ARTMIP Workshop in 2017. 
The tier 1 experiment is focused on tracking ARs in a modern reanalysis [Modern-Era Retro-
spective Analysis for Research and Applications, version 2 (MERRA2)]. The Second ARTMIP 
Workshop (Shields et al. 2019) was oriented around discussion of tier 1 results and around 
designing and planning the first set of tier 2 experiments: the tier 2 C20C+ experiment and 
the tier 2 CMIP5/6 experiment. Both initial tier 2 experiments are focused on understand-
ing the effects of climate change on AR characteristics, with the C20C+ experiment focus-
ing on a set of high-resolution atmosphere-only simulations, and the CMIP5/6 experiment 
focusing on a multimodel collection of fully coupled simulations from the Coupled Model 
Intercomparison Project.
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Following the Second ARTMIP Workshop, two separate developments motivated the need 
for developing a large dataset of hand-labeled ARs. Discussions following the Second ARTMIP 
Workshop suggested that differences among AR tracking algorithms might reflect differences 
in expert opinion about what constitutes the boundary of ARs; resolving this question would 
require experts to hand-label ARs. Unrelated, but concurrent, advances in computational 
climate science have demonstrated the utility of modern machine-learning methods for 
tracking weather phenomena (Mudigonda et al. 2017; Muszynski et al. 2019; Kurth et al. 2018). 
These developments also highlight the need for high-quality data to train machine-learning 
methods: expert-labeled datasets.

Emerging results from the tier 1 and 2 experiments, along with the recently identified need 
to develop a high-quality, hand-labeled dataset of ARs, motivated the ARTMIP Committee to 
convene the Third ARTMIP Workshop,1 held at Lawrence Berkeley Laboratory on 16–18 October 
2019. The meeting included a substantial virtual component, with 25% of attendees attend-
ing virtually; the meeting included several presentations from remote attendees. The Third 
ARTMIP Workshop was organized around

•  presentation of results from recent and ongoing ARTMIP research: tier 1 and beyond (with 
a focus on tier 2);

•  working discussion of current and future ARTMIP experiments and papers; and
•  solicitation of expert identification of atmospheric rivers and other weather phenomena 

for machine learning.

Initial tier 2 results presented at the workshop show that, while most methods agree, qualita-
tive conclusions about the effect of climate change on ARs can depend on tracking algorithms. 
These results further motivate exploration of the role of AR tracking uncertainty on other as-
pects of AR science. Specifications and timelines for three new tier 2 experiments were defined: 
tier 2 reanalysis, tier 2 high latitude, and tier 2 paleo-ARTMIP. A future tier 2 experiment was 
also discussed, and specifications and a timeline will be developed in future ARTMIP interac-
tions (e.g., teleconferences): tier 2 Model for Prediction Across Scales (MPAS)–El Niño–Southern 
Oscillation (ENSO). Group and breakout discussions during the workshop identified numerous 
gaps in understanding and associated research priorities. These gaps and research priorities are 
a key outcome for the ARTMIP workshop. Those interested in more information about the work-
shop should refer to the full workshop report, which is available at https://portal.nersc.gov/cascade 
/artmip/workshop_report/.

Key gaps and research priorities
Basic research on AR life cycle.
 Gap: The physical drivers of AR genesis, development, and dissipation are not completely 

understood, and this lack of understanding impedes our ability to constrain the quantita-
tive definition, detection, and tracking of ARs.

 Recommendation: There is a need for more basic research on the dynamics and life cycle 
of ARs.

There was considerable discussion during the workshop about the need for refining our 
theoretical understanding of the AR life cycle: from genesis to dissipation. Some basic ques-
tions were identified that, if answered, could help reduce quantitative uncertainty in the 
definition of ARs:

1) What causes the genesis of ARs?
2) What controls the frequency of ARs? 1 Funded by the U.S. Department of Energy.
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3) What controls the duration of ARs?
4) Are ARs always associated with extratropical cyclones (ETCs)?
5) Are ARs always associated with some form of baroclinic instability?

Analysis and intercomparison of the dynamics associated with ARs would be a valuable 
and logical step toward providing answers to some of these questions. Recent work by Zhou 
et al., which was presented during the workshop, shows that different phases of the MJO 
initiate equatorial Rossby and Kelvin waves—in a classic Gill response to tropical heating 
anomalies—that modulate the frequency and location of AR genesis in the Pacific. This 
analysis addresses questions 1 and 2, and more analyses of this type would help refine our 
understanding of the formation of ARs.

Flavors of ARs.
 Gap: Existing tracking methods do not consider that there might be different “flavors” of 

ARs.
 Recommendation: Research is needed to determine whether and how there might be dif-

ferent flavors of ARs (e.g., role of baroclinity, generation mechanisms), and if so, whether 
this might lead to different classes of tracking algorithms.

It was also postulated that there might be different “flavors” of ARs, with different generat-
ing physical mechanisms controlling their life cycle, for example, if some are associated with 
transient baroclinic instabilities and others are associated with quasi-stationary geopoten-
tial height gradients. Relatedly, there was also discussion about the utility of analyzing the 
dynamics (e.g., baroclinicity) associated with ARs across different algorithms. This could 
provide insight into the underlying dynamical processes that influence the evolution of ARs 
at various stages of their life cycles.

Prevailing tracking methods have not considered this possibility. Such methods might 
require an ability to distinguish among ARs with different physical characteristics, such as 
tropical moisture filaments, ARs that originate from ETCs, those encompassing uplifting mo-
tions versus not, and ARs embedded in steering flow. This is a critical step to enable further 
understanding, accurate identification, and improved forecasting of ARs and associated 
physical systems. Ideally, “flavored” AR tracking methods could incorporate connections to 
surface precipitation, interactions with synoptic-scale baroclinicity, and interactions with 
other phenomena such as tropical cyclones and jet streams.

Classes of AR algorithms.
 Gap: ARTMIP has documented different classes of AR detection algorithms, which partially 

explains the spread in AR detection results.
 Recommendation: Objective, and physics-informed, clustering approaches could help estab-

lish a quantitative vocabulary for explaining differences among AR detection algorithms.

The range of features detected by algorithms in existing tier 1 and 2 datasets is an im-
mediate and ongoing source of uncertainty that has provided challenges for those analyz-
ing ARTMIP output. Aside from relative versus absolute methods, there is no a priori way—
at least that the ARTMIP community has so far identified—to group AR detection methods 
in a way that helps make sense of the broad range of AR characteristics observed across 
algorithms.

Despite the focus of the discussion on existing uncertainties in AR detection techniques 
and impacts on AR science, the group found a cause for cautious optimism: analogous to dif-
ferent physics parameterizations in climate models, different AR algorithms were developed 
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with different goals in mind, and thus may each have distinct applications. This suggests that 
there exists a logical approach to group and categorize existing AR algorithms to facilitate 
understanding of how and why AR characteristics and metrics differ among algorithms. The 
group also discussed the possibility of using statistical methods, such as k-means clustering, 
to objectively categorize AR detection algorithms. If there are different AR flavors, there is 
the possibility that different detection methods tend to preferentially identify different AR 
flavors; objective clustering methods could help clarify this.

Leveraging 3D structure.
 Gap: Most current AR detection algorithms are primarily based on 2D features, which is 

partly due to computational considerations and data availability, but ARs have distinct 3D 
structure.

 Recommendation: Research groups with expertise in, and access to, high performance 
computing resources should explore detection approaches that leverage the 3D structure 
of ARs.

The group identified several gaps that may limit the ability of current AR tracking results to 
improve our understanding and prediction of AR physics and impacts. First, current detection 
algorithms are all based on two-dimensional horizontal patterns. This choice is partly influ-
enced by the computational resources generally available and by data limitations/availability 
(e.g., most satellite datasets are 2D). In reality, ARs have complicated three-dimensional 
structures in nature. The physical features of ETCs likely make simple thresholding methods 
unfeasible. However, applying detection or tracking algorithms to large, volumetric data are 
computationally highly complex and requires substantial resources (e.g., memory) that make 
such work impractical for many. Research groups with sufficient computing resources could 
advance AR science by developing algorithms that consider the three-dimensional nature of 
ARs.

Common software infrastructure.
 Gap: There are a growing number of different AR detection codes reflecting a diversity of 

quantitative AR definitions. Software differences make the systematic comparison of these 
definitions difficult.

 Recommendation: Develop open-source computational frameworks to facilitate the imple-
mentation of new and existing AR detection methods.

Common open-source computational approaches will help broaden and speed up AR-related 
research. The community can benefit from some open-source codes that make efficient AR 
tracking for operational tasks or exploratory studies. In addition, open-source codes showing 
discretization schemes for calculating terms and equations used for AR identification can help 
ensure consistency across all related physics-driven data analysis studies at the numerical 
level. The Regional and Global Model Analysis (RGMA)-funded Toolkit for Extreme Climate 
Analysis (TECA)2 may prove to be a useful starting point for developing an open-source 
ARTMIP framework, as it is designed to facilitate the development of modular data processing 
pipelines on high-performance computing systems.

Expert-labeled AR dataset.
 Gap: It is not clear whether differences among expert opinions about AR boundaries are 

as large as differences among AR detection algorithms.
 Gap: Existing machine learning methods for detecting ARs 

are based on heuristic algorithms. 2 https://github.com/LBL-EESA/TECA/
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 Recommendation: Future AR research, especially research using machine learning, should 
leverage results from the ARTMIP ClimateNet campaign.

A unique component of the Third ARTMIP Workshop, relative to previous ARTMIP work-
shops and to other discipline-focused workshops, is the inclusion of a workshop session 
devoted to having experts hand-identify ARs. The purpose of the session was twofold: 1) to 
assess the extent to which differences among algorithms might reflect differences in opinion 
about what ARs are, and 2) to develop a dataset that can form the basis for machine-learning-
based AR detectors.

This took advantage of major investments at LBL in machine learning: ClimateNet.3 
ClimateNet was developed at Lawrence Berkeley National Laboratory (LBNL)/National Energy 
Research Scientific Computing Center (NERSC) to facilitate the collection of hand-labeled 
weather datasets. This component of the workshop was substantial: half a day, out of a 2.5-
day workshop, was devoted to this effort. This effort included over 15 workshop participants 
who labeled 660 time slices of data during the session (Fig. 1).

Conclusions
The enthusiasm for ARTMIP was evident during the workshop, especially when discussing 
potential future areas of exploration (e.g., new tier 2 experiments). To this end, plans were 
made to expand the ARTMIP timeline to include two new tier 2 subtopics, for example, re-
analysis sensitivity and paleoclimate. ARTMIP will continue to provide the community with AR 
catalogues across all subtopics with the aim of facilitating scientific discourse and forwarding 
our understanding of atmospheric rivers. We will accomplish this by continuing our activities 
(master ARTMIP timeline), contributing to the body of scientific literature, and participating 
in scientific meetings with a short-term goal of proposing ses-
sions at International Atmospheric Rivers Conference 2020 in 
Chile and relevant society meetings.

Fig. 1. Comparison of expert AR identifications from 6 Sep 2009 of a 25-km Community Atmosphere 
Model, version 5, Atmospheric Model Intercomparison Project simulation. The background field shows 
integrated water vapor, and the green contours show outlines of ARs identified by 15 ARTMIP participants.

3 www.nersc.gov/research-and-development/
data-analytics/big-data-center/climatenet/
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