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Abstract

Long-term changes in convective and stratiform precipitation in Northern Eurasia (NE) over the last
five decades are estimated. Different types of precipitation are separated according to their genesis
using routine meteorological observations of precipitation, weather conditions, and morphological
cloud types for the period 1966-2016. From an initial 538 stations, the main analysis is performed for
326 stations that have no gaps and meet criteria regarding the artificial discontinuity absence in the
data. A moderate increase in total precipitation over the analyzed period is accompanied by a relatively
strong growth of convective precipitation and a concurrent decrease in stratiform precipitation.
Convective and stratiform precipitation totals, precipitation intensity and heavy precipitation sums
depict major changes in summer, while the relative contribution of the two precipitation types to the
total precipitation (including the contribution of heavy rain events) show the strongest trends in
transition seasons. The contribution of heavy convective showers to the total precipitation increases
with the statistically significant trend of 1%—2% per decade in vast NE regions, reaching 5% per decade
atanumber of stations. The largest increase is found over the southern Far East region, mostly because
of positive changes in convective precipitation intensity with a linear trend of more than 1 mm/day/
decade, implying a 13.8% increase per 1 °C warming. In general, stratiform precipitation decreases
over the majority of NE regions in all seasons except for winter. This decrease happens at slower rates
in comparison to the convective precipitation changes. The overall changes in the character of
precipitation over the majority of NE regions are characterized by a redistribution of precipitation

types toward more heavy showers.

1. Introduction

A considerable threat to society from the observed
global climate change comes from the changes in
precipitation characteristics. In Northern Eurasia
(NE), increasing precipitation intensities and the
occurrence of heavy rain events (Semenov and Bengts-
son 2002, Groisman et al 2005, Mokhov et al 2005, Ye

etal 2015, Donat et al 2016, Zolina and Bulygina 2016),
and changes in the duration of wet and dry spells
(Khon et al 2007, Zolina et al 2010, 2013, Ye 2018),
affect national economies by modulating streamflow
and water availability (Mokhov et al 2003, Milly et al
2005, Shkolnik et al 2018) and causing local devastat-
ing flashfloods (Meredith et al 2015b) or large-scale
deluges (Mokhov 2014, Mokhov and Semenov 2016).

©2019 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/1748-9326/aafb82
https://orcid.org/0000-0003-3635-6263
https://orcid.org/0000-0003-3635-6263
mailto:a.chernokulsky@ifaran.ru
https://doi.org/10.1088/1748-9326/aafb82
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aafb82&domain=pdf&date_stamp=2019-03-20
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aafb82&domain=pdf&date_stamp=2019-03-20
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

Environ. Res. Lett. 14 (2019) 045001

A careful look at the structural changes in precipitation
is required in order to understand the observed
tendencies and estimate future changes (Groisman
etal 1999). Whereas in the climate models distinguish-
ing between stratiform and convective precipitation is
straightforward, as they are simulated as different
variables, separating these precipitation types in the
real world is challenging (Houze 1997) and requires an
analysis of supplementary weather parameters. This
problem is the focus of ongoing large environmental
and climate dynamics regional initiatives (Groisman
etal2017, Collins et al 2018).

Global climate change may impact the static stabi-
lity of the troposphere. In particular, a significant
increase of the tropospheric lapse rate was found over
NE and Europe in the second half of the 20th century
(Mokhov and Akperov 2006) with the possible intensi-
fication of convective processes. An indication of such
a tendency is the increase of convective cloud cover
(Sun et al 2001, Chernokulsky et al 2011, 2017a) and
convective instability indices (Riemann-Campe et al
2009, Pistotnik et al 2017) over NE, which may lead to
the more frequent formation of severe convective
events (Kurgansky et al 2013, Chernokulsky et al
2017b, Taszarek et al 2018). Favorable conditions for
severe convective events may become more frequent
over the course of the 21st century, according to cli-
mate model projections (Marsh et al 2009, Pucik et al
2017, Chernokulsky et al 2017b).

Intensification of convective processes may
increase the contribution of convective rainfall to the
total precipitation. Recent studies show an increase in
the convective precipitation in central Europe (Rul-
fova and Kysely 2014) and NE (Han et al 2016, Ye et al
2017), which could be a consequcne of the warming
(Bergetal2013,Ye etal 2016, Peleg et al 2018). In part-
icular, Ye et al (2017) found a very strong increase in
convective precipitation (with the trend in the annual
total being of 36.7 mm/decade and sensitivity to
temperature amounting to 18% °C™") accompanied by
asimultaneous decrease of stratiform precipitation for
the 1966-2000 period. However, many of these trends
should be treated with caution due to the impact of
abrupt step-like discontinuities in three-hourly obser-
vation records for clouds (Eastman and Warren 2013)
and corresponding weather character.

In this paper, we separately analyze changes in the
convective and stratiform precipitation for the
1966-2016 period using routine meteorological obser-
vations of precipitation, present and past weather, and
morphological cloud types to classify the two precipita-
tion types. We demonstrate that for this longer period an
observed increase in the total precipitation intensity is
also associated with an increase in convective rainfall
intensity and a growing contribution of heavy and
intense showers. However, the increase in convective
precipitation is smaller compared to that reported pre-
viously due to the exclusion of station data exhibiting
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artificial changes and, to a lesser degree, due to choosing
alonger period.

2.Data and methods

2.1. Discriminating between different types of
precipitation by their genesis

Various approaches have been proposed to discrimi-
nate between convective (solely thermodynamic dri-
ven) and stratiform (dynamic driven) precipitation.
Some approaches reveal the type of precipitation by
establishing thresholds for precipitation characteris-
tics and associated measures (for instance, radar
reflectivity, rain intensity, cloud drop size, ice and
liquid water paths, graupel presence, etc), which can
be measured using remote sensing by radars, satellites,
and optical disdrometers (see e.g. Alibegova 1985,
Steiner and Smith 1998, Sempere-Torres et al 2000,
Anagnostou 2006, Sui et al 2007, Xu et al 2013, Yang
et al 2013, Ahmed and Schumacher 2015). Other
methods differentiate between convective and strati-
form precipitation by analyzing their spatio-temporal
structure (Tremblay 2005, Ruiz-Leo et al 2013, Han
et al 2016). The third approach is to use information
from routine meteorological observations of weather
(present only, or present and past) and/or cloud
morphological types. Within this approach, showers
and thunderstorms (nonshowery rainfalls and snow-
falls) can be attributed to convective (stratiform)
precipitation (Evseev 1958, Dai 2001, Berg et al 2013,
Rulfova and Kysely 2013, Ye et al 2016, Chernokulsky
et al 2018). Because observations of weather and
clouds are synchronized with precipitation observa-
tions and have the same time coverage, the approach
can be used for estimating decadal variability of
different precipitation types (Rulfova and Kysely 2014,
Yeetal2017).

Here, we have utilized routine observations from
538 Russian meteorological stations, collected at the All-
Russian Research Institute of Hydrometeorological
Information—World Data Center (RIHMI-WDC) for
the 1966-2016 period (Bulygina et al 2014). We used
data on present and past weather (three-hourly observa-
tions), cloud morphological types (three-hourly) and
precipitation rate (twelve-hourly). Until 1986, precipita-
tion at Russian meteorological stations was measured
four-times-a-day (evenly, every six hours, or unevenly,
at 3-9-3-9 h, depending on the station). To maintain the
temporal homogeneity of data series, we recalculated
these earlier four-times-a-day observations to two-
times-a-day ones (with 12h interval). Furthermore,
through the comparison with the existing RIHMI-WDC
datasets on daily and monthly precipitation rates, we
corrected 700 records in the initial dataset that were
erroneous due to digitizing mistakes during the manual
transfer of information from punch cards for the
1960-1980 period (e.g. a 12.2 mm value was digitized as
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a 102.2 mm value) (see Chernokulsky et al 2018 for
more details).

To discriminate among different types of pre-
cipitation (specifically, showery, nonshowery, and
drizzle), we used codes of present and past weather
and information on cloud morphological types that
were recorded concurrently with the precipitation
report and for three preceding reports (equivalent to
12 h) (Chernokulsky et al 2018). We used information
on present weather as the primary criterion (82% of
precipitation reports were assigned to a particular type
using this criterion), past weather as the second prior-
ity criterion (16.5%) and morphological cloud types as
the third priority criterion (1.5%). In other words, if a
code (or codes) of present weather was attributed to a
convective event (in particular, WMO codes 13,
17-19, 25-27, 29, 80-99) (see, for details, Dai 2001,
Chernokulsky et al 2018) the precipitation report was
considered as showery. If four codes of present
weather were not associated with a particular pre-
cipitation type, then the past weather codes were
checked. If they also failed to separate precipitation
type, then information on clouds was used to finally
provide attribution. Nonshowery and drizzle pre-
cipitation were identified in a similar way (see supple-
mentary figure S1, available online at stacks.iop.org/
ERL/14/045001 /mmedia, for more details). Occa-
sionally, codes of various precipitation types may
occur over 12 h; it this case, the corresponding pre-
cipitation value is considered as compound. If none of
the criteria unambiguously defined the precipitation
type, the related rainfall event was marked as
undefined.

Utilizing information on both past and present
weather together with information on cloud types and
using 12 h precipitation data (instead of daily) we are
capable of substantially reducing the number of
reports with compound and undefined precipitation
(down to 9.2% and 0.9% of all reports, respectively).
In particular, the number of reports with compound
precipitation is half that estimated by Ye et al (2017).

2.2. Exclusion of stations with erroneous reports

The accuracy of the proposed method depends on the
homogeneity of standard weather observations that
are uniform for various seasons, various regions, and
various temporal periods (at least for the examined
period 1966-2016, when the observation procedure
has not been changed). This allows us to restore
consistent values of different precipitation types in
space and time. Inherent uncertainties of the method
are associated with the peculiarities of the weather
observing procedure and practices, such as the restric-
tion of the visible horizon, difficulty of embedded
convection determination, coding specifications and
some other issues (see Chernokulsky et al 2018 for
more details). These uncertainties may alter the
retrieval of precipitation characteristics, but their
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impact is largely of a random nature and has a minor
effect on trend estimates. The method is also sensitive
to the training of observers. Thus, a well trained
observer being replaced by a poorly trained one may
apparently result in the appearance of inhomogeneity
in time series. Such time series (if any) should be
excluded from the analysis.

When examining variations of cloud types world-
wide, Eastman and Warren (2013) revealed an artifact-
like character of instant reversal in time series of the
cumulonimbus and nimbostratus cloud amount for
many Russian meteorological stations. Since the
observed weather and cloud types are inherently related,
the corresponding artifact-like changes can be found in
present weather code time series. Indeed, an inspection
of time series with the frequencies of reports that were
associated with particular precipitation types revealed the
presence of such artificial reversals for several stations
(figure S2) (with the absence of such changes at the
neighboring stations). The nature of these local instant
reversals is still unclear. They are not linked to the station
location or year of changes. Because reversals had occur-
red in different years, they tend to be masked when the
regional analysis based on the aggregation of many sta-
tions is performed. We assumed that these abrupt chan-
ges were associated with a change of observer; but
confirmation was not possible due to the lack of
metadata.

To eliminate problematic stations from further
analysis, we applied a step-testing procedure similar to
one used by Eastman and Warren (2013). At the begin-
ning, discontinuity was taken as the maximum of the
time derivative of the five-year running mean of the
ratio between showery reports and all precipitation-
weather reports. Further, significance of abrupt
change was tested by comparing the samples of the
ratio between the preceding and subsequent (with
respect to the break) values in two ways. First, the two
means were verified for overlapping (within their stan-
dard deviations) (as in Eastman and Warren 2013).
Second, the nonparametric Mann—Whitney U-test for
the comparison of two sample means was carried out.
We performed further analysis only for the stations
where the before-reversal and after-reversal means
overlapped or (and) two samples passed the U-test (at
the significant level 0f 0.05).

In addition, we restricted our consideration to
records for which the number of totally missing years
was less than five years (we considered the whole year
to be missing if data for any day of the year was miss-
ing) and to the stations with an elevation of below
1000 m. We also excluded all stations that had been
relocated during the analyzed period. In total, 111 sta-
tions were omitted. From the remaining 427 stations,
we excluded an additional 101 stations because they
failed to pass both tests on the artificial instant reversal
insignificance. Finally, 326 stations in total (with 154
passing one of the tests, and 172 passing both) were
selected for the analysis (figure 1).
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Figure 1. Location of Russian meteorological stations from RIHMI-WDC dataset. Stations that have gaps of >5 years, had been
relocated, or have elevation >1000 m are shown with small grey dots. Stations that failed to pass tests on artificial instant reversal
absence are shown with black circles. Orange (red) circles denote stations that passed only one (both) test(s). Green dashed lines show
the division into five regions (I—northern European part (north of 60 N, west of 75E), Il—northern Asian part (north of 60 N, east of
75E), Ill—southern European part (south of 60 N, west of 60E), [IV—southern Siberia (south of 60 N, between 60E and 110E), V—
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2.3. Precipitation characteristics

We analyzed the seasonal/annual precipitation totals P
(in mm), frequency of precipitation events pP (fraction of
wet days over a season/year), and precipitation intensity I
(precipitation total scaled by the number of wet days, in
mm/day). We also evaluated the precipitation accumu-
lated during very wet days (>95th percentile, which is
obtained from empirical distribution for each station for
the whole period) (P95, in mm) and its contribution to
precipitation totals (R95p = 100 - P95/P, in %) (Klein
Tank and Konnen 2003). All values were counted for both
convective and stratiform precipitation and were denoted
by subscripts ‘Conv’ and ‘Strat’, respectively (for example,
R95pcony = P95conv/Pcony)- The variable without the
subscript stands for the characteristic of total precipitation
(sum of all types). In addition, we calculated the fraction
of Pcony and Pgy, in the total precipitation P ( fcony and
fstear TESPectively; thus, foony = 100 - Poogy/P, in %) and
the contribution of P9cy,y and P9gy,. to P
RI5PTOTcony and RISPTOTeyy, respectively; thus,
RI5pTOTcony = 100 - P95cony/P; in %). We note that
the results related to R95p and R95pTOT indices should
be treated with caution due to a finite number of wet days
per season (it is even more restricted for various
precipitation types) (Zolina et al 2009, Leander et al 2014,
Schir et al 2016).

We estimated linear trends of the aforementioned
precipitation characteristics for each station separately
and for five regions (where all stations were simply
averaged with equal weight) (region boundaries are
shown in figure 1). We used a nonparametric linear
Theil-Sen slope estimator (which is less sensitive to
outliers than standard linear regression, it is of

particular importance for estimating R95p and
R95pTOT trends) to calculate the trend slope, and a
nonparametric Mann—Kendall test to estimate the sig-
nificance of the trend. To estimate whether the trend
(of either sign) pattern holds field (or group) sig-
nificance (i.e. the conclusion about growing/declining
tendency can be attributed to the considered domain),
we calculated the field significance of the trend pat-
terns. The analysis was performed, according to Live-
zey and Chen (1983), using binominal distribution
and with the assumption that all individual trend esti-
mates are independent.

3. Results

Total precipitation P has experienced a moderate
increase over the NE region over the last five decades
(figure 2) (see also Bogdanova et al 2010). The most
pronounced statistically significant trends are found in
the south of the Far East (figure 2(a)) which is in
concordance with previously obtained results (e.g.
Groisman et al 2014). The opposite trends of annual
Pcony and Psy, (increase and decrease, respectively) are
significant for the majority of stations. Absolute magni-
tudes of the trends exceed 50 mm/decade for several
regions (figures 2(b), (c)). The major increase of Pcony
occurs at Sakhalin Island (up to 120 mm/decade), while
Pgypar is reduced dramatically at the lower basin of the
Amur River (down to —76 mm/decade). Similar magni-
tudes of Pcopny and Py, trends were found by Ye et al
(2017) for a shorter period (up to 2000), but in the south
of Siberia. Note that very few stations display reverse
trends (decrease of Pc,,,, and increase of Pg,). Several
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Figure 2. Trends (obtained with the nonparametric Theil-Sen estimator) for annual total precipitation totals P (a), convective
precipitation totals Pcopy (b), and stratiform precipitation totals Py, (c) for the 19662016 period. Trends are shown only for 326
stations that passed at least one of the tests on artificial instant reversal absence. Large circles stand for statistical significant trends.
Significance is computed with the nonparametric Mann—Kendall test (at 0.05 significant level). Plus and minus signs denote the entire

NE patterns that holds field significance (at 0.1 significance level).

seasonal peculiarities of Pcon, and Pgy, changes are
revealed (figure 3). In winter, positive trends for Ps,, are
found at stations in the European part of Russia (up to
17 mm/decade) (figure 3(b)). The strongest decline in
Ps;por 0ccurs in the Far East regions in summer (down to
—25mm/decade) and autumn (down to —26 mm/
decade) (figures 3(f), (h)). It is collocated with the Pcypy
increase in this region in the same seasons (up to
40 mm/decade) (figures 3(e), (g)). For the European
part, the highest rates of the seasonal Pc,,, trend are
revealed in spring (the absolute maximum is found in
Sochi with 28 mm/decade) (figure 3(c)). In general, the
increase of Py, and the decrease of Psy,, happen in
different seasons. Specifically, the largest number of
stations exhibit significant positive Pcopy trends in spring
and autumn, while the largest number of stations show
significant negative Ps, trends for summer. A more
pronounced increase in convective clouds occurrence in
transition seasons than in summer was revealed pre-
viously in Northern Eurasia and North America by Sun
et al (2001). They associated it with the ‘saturation’ of
summer seasons with convective event frequency, while
unsaturated spring and autumn become more ‘summer-
like’ seasons, which is partly confirmed by the obtained
tendencies of precipitation (see also Ye eral 2016).
Changes in fcony and fsy., (figure S3) reflect the joint
effect of changes in Pc,,y and Pg,,, and are linked to the
absolute values of P. Thus, maximum trends of fcoy
and fg are revealed in winter when P is relatively small
(close to 20%)//decade for several stations, which means
almost an entire replacement of stratiform by

convective precipitation). For annual means, fc,,, and
fstrat have significant trends within 2%—15%,/decade.

Similar tendencies are obtained for the frequency
of convective and stratiform precipitation (pPc,,, and
PPsirar) (figure S4). For annual means, the majority of
stations display a pPc,,, increase (up to 0.06/decade)
and pPsy.,, decline (down to —0.03/decade) with gen-
erally higher values in southern regions and lower in
northern regions of NE. Similar tendencies for pPcqpy
and pPsy, are obtained for seasons. Opposite tenden-
cies are also revealed. Thus, positive trends of pPg.
are common for winter, while negative trends of
PPconyare found in summer (almost a third of stations
show asignificant decrease in pPcopy)-

Changes in P and pP determine variations in daily
precipitation intensity I (increase in P and decrease in pP
both tend to increase I). On an annual basis (figures 4(a),
(b)), the growth of P,y is more prominent than that of
PPcony, which results in a general increase in Iy, (espe-
cially evident over the Far East regions, where Ity
trends are up to 1.4 mm/day/decade). Positive Icony
trends are found in all seasons (figures 4(c), (e), (g), (1)),
with the highest increase in the Far East region (up to
1.8 mm/day/decade for several stations in summer).
Decreasing Pg.,; dominates over decreasing pPs;,,. on an
annual basis in some southern regions (especially over
the Okhotsk and Black Sea coasts, where Igy, trends
amount to —1.0 mm/day/decade). In the northern part
of NE (and in the south of Ural) annual means of Ig,
tend to increase (with trends up to 0.5 mm/day/dec-
ade). Positive seasonal trends of Ig,, are found in the
most regions of NE in winter (figure 4(d)) and in some
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Figure 3. The same as for figure 3, but for winter (a), (b), spring (c), (d), summer (e), (f), and autumn (g), (h) totals of convective
precipitation Pc,py (), (), (€), (g) and stratiform precipitation Ps, (b), (d), (f), (h).
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regions in spring (figure 4(f)) and summer (figure 4(h)).
The largest Isy, decrease is found at southern stations in
summer (with the absolute minimum of —1.87 mm/
day/decade in the city of Blagoveshchensk).

Positive Pcyyy trends and negative Pgy, trends are
accompanied by same-sign tendencies of heavy pre-
cipitation events, specifically, the increase of P95¢,,,, and
decrease of P95y, (figure S5). A significant positive
trend of annual P95, was obtained for most of the sta-
tions (with the maximum value of 52 mm/decade for
Nevelsk station at Sakhalin Island). A significant increase
of P95¢cony is found from spring through autumn. The
annual P95s,,, tends to decline (with the negative trend
down to —30 mm/decade), while changes of seasonal
P95¢ae are mostly insignificant. Changes in the

contribution of heavy precipitation to totals of related
precipitation type (R95p) are more pronounced for stra-
tiform precipitation. The annual R95ps;.,. shows a nega-
tive trend with the strongest decrease of —10%/decade
for several stations in the south of Siberia (figure S6). The
largest significant positive trends of annual R95pc,y are
found for Sakhalin Island (up to 8%/decade). Seasonal
trends of R95pcony and R95ps;..; are generally insignif-
icant (rare heavy precipitation events are often treated as
outliers by the Mann—Kendall test and Theil-Sen
estimator).

Heavy convective showers tend to contribute
more to total precipitation, whereas a portion of heavy
stratiform rainfalls in the total precipitation is declin-
ing over the analyzed period. That is, changes in
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Figure 4. The same as for figure 3, but for intensity of convective (stratiform) precipitation Igony (Isra) for annual (a), (b), winter (c),
(d), spring (e), (f), summer (g), (h), and autumn values (i), (j).

RI5pTOTcony and RI5SpTOTsy,; are in general con-  Far East (significant negative trends amount to —6%,/dec-
cordance with P95c,,, and P95, changes. Sig- ade) (figure 5(b)). Seasonal trends (figures 5(c)—(j)) are
nificant positive annual trends of R95pTOTc,,, are significant for a fewer number of stations due to the rarity
revealed for many stations with the slopes up to 5%,/ of heavy precipitation events. The R95pTOT¢,y, index
decade in the south of Siberia and the Far East markedly increases for the warm period of a year (with
(figure 5(a)). Changes in R95pTOTs,,, are negative the maximum trend in summer of 7.1%/decade in the
with the largest decrease in the central and northern center of the European part of Russia). R95pTOT sy
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Figure 5. The same as for figure 4, but for contribution of heavy convective (stratiform) precipitation to total precipitation,

2 4 6 8 10

noticeably decreases only in autumn (down to —4.5%/
decade), while in winter, significant positive trends are
also found (up to 5%/ decade for several stations).

Of particular interest is the variability and trends of
different precipitation type characteristics aggregated
over large regions. Figure 6 shows the long-term varia-
bility of annual precipitation totals for five regions (see

figure 1 for specification of regions) that were obtained
by averaging over all stations in the regions and using
only stations that passed tests on artificial instant rever-
sal insignificance. Table 1 summarizes corresponding
trend estimates. An elimination of problematic stations
with data discontinuities substantially (more than twice
for some regions) reduces the magnitude of positive
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Figure 6. Interannual variations of annual precipitation totals aggregated for five regions (see figure 1 for information on region
boundaries). Black, red, blue, green, and magenta colors denote total, convective, stratiform, drizzle, and compound precipitation
totals, respectively. Solid (dashed) lines stand for the result of aggregation of stations that passed both tests (only one test) on artificial
instant reversal absence; dotted lines display the result of aggregation of all stations.
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trends in Pcyy,y and negative trends in Pg,,, while the
difference between stations that passed one or both tests
isless prominent.

Among all regions, the largest trends in the pre-
cipitation totals are noted for the south of the Far East
(the region V), where Pg,; declines from 250-300 mm
in the 1960s to 150—200 mm in the 2010s, while Pcq,,
shows the upward change from 200mm to
300-350 mm during the same period. Note that for all
southern regions (the regions III-V) absolute values of
Pcony were comparable to those of Pgy,, in the 1970s but
started to prevail from the 1980s. In the northern
regions (regions I and II), fs... is still greater than fcony
but their difference is decreasing. The long-term
increase of convective precipitation and decrease of
stratiform are in agreement with previously reported

decadal changes of cloud type variations (Sun et al 2001,
Khlebnikova and Sall 2009). The redistribution of the
total precipitation between stratiform and convective
has no effect on the drizzle and compound precipita-
tion, which both show generally low variability and
mostly insignificant trends (figure 6, table 1).

The largest trends of absolute precipitation char-
acteristics (P, P95, I) are noted for most of the regions
in the summer (table 2), except for region V, where
changes in autumn are also prominent. For relative
characteristics (f, R95p, and R95pTOT), changes in
spring and autumn are greater than in summer. Con-
vective precipitation characteristics tend to show sta-
tistically significant positive trends for all regions and
for all seasons except winter (when insignificant trends
of both signs are identified, table 2). Instead,
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Table 1. Trends of annual precipitation totals (mm/decade) for different regions (see figure 1 for information on region
boundaries) and different stations utilized (all stations—all stations in region except those that have too many gaps (>5
missing years), are located at high elevation (>1000 m), or have been relocated; one test passing—stations that passed
only one test on the artificial instant reversal absence; both tests passing—stations that passed both tests on the artificial
instant reversal absence). Trends are computed with the Theil-Sen estimator. Bold fonts denote statistically significant
trends (atalevel 0f 0.05). Significance is obtained with the nonparametric Mann—-Kendall test. Numbers of utilized

stations are also shown.
Precipitation type Regions I 1I I v \%
All precipitation All stations 8.44 6.17 8.64 5.86 7.70
One test passing 7.85 4.38 6.75 4.94 7.24
Both tests passing 8.05 2.38 5.95 5.10 7.12
Convective precipitation All stations 24.90 23.70 22.95 39.77 41.32
One test passing 14.14 15.28 18.59 24.87 31.62
Both tests passing 9.45 9.89 15.40 20.18 28.04
Stratiform precipitation All stations —15.55 —15.67 —11.45 —25.58 —28.15
One test passing —6.38 —10.79 —8.93 —15.05 —20.54
Both tests passing 0.89 —8.82 —6.44 —12.30 —20.33
Drizzle precipitation All stations —1.98 —0.78 —0.34 —0.79 —-179
One test passing —0.78 —0.23 0.08 —0.44 —0.80
Both tests passing —0.34 0.24 0.37 —0.12 0.18
Compound precipitation All stations 0.57 0.23 —1.36 —3.95 —0.76
One test passing 0.44 0.55 —0.94 —2.51 0.42
Both tests passing —2.77 1.54 —0.85 —1.50 1.00
Number of stations All stations 49 73 121 86 98
One test passing 36 58 109 54 69
Both tests passing 17 40 57 25 33

stratiform precipitation characteristics generally show
significant negative trends but with smaller magni-
tudes however (especially for the regions II and III).
Moreover, region I is dominated by positive changes
in stratiform precipitation characteristics (P, I, R95p)
which may be associated with a poleward shift of mid-
latitude storm tracks (Mokhov et al 2009, Bender et al
2012, Eastman and Warren 2013, Tilinina et al 2013).

4, Discussion and conclusions

The moderate increase in the total precipitation over
NE over the last five decades is accompanied by the
tremendous growth of convective precipitation and
the concurrent reduction of stratiform precipitation
throughout the entire region. In general, rates of
convective precipitation increase are greater than
those of stratiform precipitation decrease (the latter
even shows positive trends, primarily in winter in the
northern regions of NE). Generally, convective and
stratiform precipitation totals and heavy precipitation
sums exhibit major changes in summer, while frac-
tional contributions of these two precipitation types to
the total precipitation (including the contribution of
heavy precipitation events) show the strongest trends
in transition seasons. This singles out spring and
autumn as more summer-like seasons in terms of
precipitation regime, which is in line with the previous
results by Sun ef al (2001) who found this tendency for
cloud types.

Heavy convective precipitation events have started
to contribute more to total precipitation. The statisti-
cally significant trends amount to 1%—2%,/decade for

broad regions (resulting in an increase of up to 10%
for the last fifty years) being even higher at particular
stations (up to 5%/decade). The largest increase is
found over the southern Far East region (mostly
because of the increase in the intensity of convective
precipitation with trends of about 0.4-0.5 mm/day/
decade for the entire region and up to 1.4 mm/day/
decade for several stations). The obtained trends high-
light the changing character of precipitation over NE
with the increasing role of heavy showers.

Our results are in agreement with the previous
findings that showed the increase of convective pre-
cipitation over the Eurasian continent. Particularly,
positive trends for showery precipitation were found
for central Europe (Rulfovd and Kysely 2014), North-
ern China (Han et al 2016), and Russia (Ye et al 2017).
Ye et al (2017), who restricted their analysis of data up
until the year 2000 and used all stations (including
those with questionable reports), obtained trends for
precipitation totals that are twice as strong as our find-
ings. Such strong trends may result either from using
all stations without a discontinuity check or from the
analyzed period being shorter. To reveal the main
cause of the overestimation, we calculated precipita-
tion trends for the two additional temporal periods:
1966-2000 (the same as in Ye et al (2017)) and
2001-2016 (tables S1, S2). For the longer period, the
trend slopes get reduced by 2%-10% for convective
precipitation (by 35% in region IIT) and by 5%-25%
for stratiform precipitation. The use of only stations
passing both tests on artificial change absence results
in a considerably stronger decrease in trend slopes (by
30%—60%). Thus, the use of stations with temporally
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Table 2. Trends in annual and seasonal precipitation characteristics of convective (C) and stratiform (S) precipitation types for different regions (see figure 1 for information on region boundaries). Only stations that passed both tests on the
artificial instant reversal absence were used (number of stations are shown in brackets for each region). Trends are computed with the Theil-Sen estimator. Bold fonts denote statistically significant trends (at 0.05 level). Significance is

obtained with the nonparametric Mann—Kendall test.

11 (40) 111 (57) IV (25) V(33)
Precipitation characteristics Regions C S C S C S C S C S
Precipitation totals, Pcony and Psy,, (mm/decade) Annual 9.45 0.89 9.89 —8.82 15.40 —6.44 20.18 —12.30 28.04 —20.33
Winter —0.05 3.02 0.38 —1.76 2.49 1.06 1.03 1.46 1.61 —0.75
Spring 2.10 —0.10 1.72 —1.23 5.10 —0.79 4.77 —1.64 7.14 —4.70
Summer 5.68 —1.96 4.89 —3.18 3.60 —3.25 9.38 —7.23 10.19 —7.73
Autumn 1.00 —0.94 2.93 —1.86 3.86 —1.59 4.89 —3.28 8.48 —6.35
Frequency of precipitation events, pPcony and pPsy.. (per decade) Annual 0.01 —0.01 0.01 —0.01 0.01 —0.01 0.01 —0.01 0.01 —0.01
Winter 0.01 0 0.01 —0.02 0.01 0 0.01 0 0 0
Spring 0.01 —0.01 0.01 —0.01 0.01 —0.01 0.01 —0.01 0.01 —0.01
Summer 0.01 —0.01 0.01 —0.01 0 —0.01 0.01 —0.01 0 —0.01
Autumn 0 —0.01 0.01 —0.01 0.01 —0.01 0.02 —0.02 0.01 —0.01
Daily precipitation intensity, Icony and Isy,, (mm/day/decade) Annual 0.05 0.06 0.11 —0.01 0.08 0.02 0.09 —0.07 0.38 —0.18
Winter 0.03 0.05 0.09 0 0.05 0.05 0.04 0.05 0.26 —0.04
Spring 0.06 0.08 0.12 0.01 0.11 0.06 0.16 0.02 0.40 —0.12
Summer 0.10 0.26 0.15 0 0.12 0.07 0.16 —0.01 0.47 —0.08
Autumn 0.02 0.05 0.11 —0.01 0.17 0.07 0.04 —0.07 0.38 —0.26
Fraction of Pc,,,y and Pg;,,, in total precipitation P, fcony and fsia (%/decade) Annual 1.66 —0.85 2.59 —3.10 2.25 —1.86 4.36 —3.83 3.88 —3.86
Winter 0.72 0.38 0.69 —0.87 1.81 —0.95 1.52 —1.39 2.03 —2.61
Spring 1.86 —0.36 2.92 —3.29 2.87 —2.24 5.15 —4.48 5.47 —5.77
Summer 2.06 —1.78 2.68 —3.10 1.83 —1.94 4.64 —3.80 3.12 —3.16
Autumn 1.26 —0.57 2.67 —3.07 2.77 —2.66 5.73 —5.45 4.82 —4.94
Precipitation sum obtained during very wet days, P95¢,,y and P95, (mm/decade) Annual 3.80 1.29 3.40 —3.61 6.72 —0.89 7.36 —6.13 12.04 —8.54
Winter —0.20 1.27 0.07 —0.51 0.68 1.07 0.26 0.74 0.72 —0.11
Spring 0.99 0.68 0.61 —0.21 1.95 0.06 2.03 —0.63 3.34 —1.76
Summer 2.52 —0.07 1.83 —0.97 2.48 —0.80 4.19 —1.81 5.21 —1.60
Autumn 0.36 —0.05 1.08 —0.57 2.07 0.45 1.61 —1.05 3.21 —2.28
Contribution of heavy precipitation to precipitation totals, R95pcony and R95pso (%/decade) Annual 0.90 0.83 1.05 —0.97 0.86 0.10 1.16 —2.71 1.81 —1.85
Winter 0.13 1.04 1.64 0.03 1.51 0.70 0.70 0.95 1.93 0.42
Spring 2.31 1.40 1.80 —0.14 1.32 0.35 3.33 —1.72 3.70 —2.18
Summer 1.61 0.31 1.21 —1.12 0.90 —0.81 1.68 —1.13 2.12 —0.77
Autumn 0.38 0.74 2.65 —0.51 2.01 0.79 1.58 —2.14 2.50 —1.37
Contribution of P95¢qny and P95ss to P, PR95pTOT oy and R95pTOT sy (% /decade) Annual 0.73 0.10 0.93 —1.43 0.92 —0.35 1.52 —1.83 1.79 —1.46
Winter —0.05 0.89 0.12 —0.12 0.49 0.39 0.33 0.63 0.84 0.16
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Table 2. (Continued.)

1(17) 11(40) 1I1(57) IV (25) V(33)
Precipitation characteristics Regions C S C S C N C S C S
Spring 1.13 0.78 1.02 —0.51 1.17 —-0.22 2.49 —1.30 2.62 —1.64
Summer 1.32 —0.25 0.99 —1.01 1.05 —0.50 1.95 —1.00 1.91 —0.63
Autumn 0.33 0.15 1.08 —0.89 1.26 0.14 1.57 —1.51 1.81 —1.21
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Table 3. Slope of regression of mean seasonal daily intensity of convective (C) and stratiform (S) precipitation to mean seasonal
temperature for different regions (see figure 1 for information on region boundaries) (in % °C™"). Regression slopes are computed
with the Theil-Sen estimator. Bold fonts denote statistically significant trends (at a level of 0.05). Significance is obtained with the
nonparametric Mann—Kendall test. Only stations that passed both tests on the artificial instant reversal absence are used.
Temperature is calculated by simple averaging of seasonal mean temperature for the same stations (since temperature data are missing
for several stations for regions I-I11, fewer stations are used for these regions; number of used stations is shown in brackets).
Percentage of intensity is calculated with respect to 51 years mean of intensity.

1(16) 11(39) 111 (54) IV (25) V(33)
Regions
Precipitation type C S C N C S C S C S
Winter 1.59 1.43 3.45 0.61 2.75 0.71 L.11 —0.32 5.13 —3.03
Spring 2.66 1.54 2.36 —0.26 1.02 0.13 1.20 —2.63 6.18 —5.96
Summer 4.78 3.07 9.76 —1.15 2.34 1.47 2.81 —0.96 13.76 —8.17
Autumn 2.98 2.10 4.80 0.78 2.29 2.60 1.48 —2.24 8.20 —3.84

homogeneous time series of weather and cloud types is
crucial for estimating robust trends in the convective
and stratiform precipitation.

Different causes may determine seasonal and
regional patterns of changes in precipitation types.
From a thermodynamic perspective, ongoing air
temperature increase yields air moisture increase with
the rate for saturated vapor pressure at 7% °C™" (the
so-called Clausius—Clapeyron (CC) rate (Trenberth
et al 2003)) that suggests a scale for precipitation
extreme intensity growth with the warming. For cen-
tral Europe, for an eight year period, Berg et al (2013)
found the CC rate of increase of stratiform precipita-
tion extreme intensity with temperature, and the
exceedance of this rate for convective extremes. Simi-
lar results were obtained for South Korea for a 24-year
period (Park and Min 2017). For the long-term view,
annual means of convective (stratiform) precipitation
intensity increase (decrease) with rising temperature
(Ye et al 2017). Our results confirm previous findings
and show seasonal variation of long-term precipita-
tion response to changing temperature (table 3) with
the maximum in summer. A particularly large sum-
mer response is found in the southern Far East region
where it is close to the so-called super (doubled) CC
rate (13.8% °C™"). Such a high CC rate in this region in
summer may be associated with high surface air
humidity (figure S7) that is critical for establishing a
doubled CC rate (Lenderink et al 2017). The vertical
structure of temperature and humidity sets a con-
vective instability of the atmosphere, which is an
important factor for convective precipitation intensity
(Loriaux et al 2017). Specifically, characteristics of
convective precipitation have a positive statistically
significant correlation with the convective available
potential energy (CAPE) for most of the stations, while
stratiform precipitation is almost uncorrelated with
CAPE (figure 7, table S3). Presumably, a large part of
the positive trends of convective precipitation in trans-
ition seasons is associated with the observed increase
of CAPE (Chernokulsky et al 2017b); however, this
assumption needs more in-depth analysis. In summer,
CARPE significantly increases over the European part of
Russia (especially near the Black Sea), but decreases

over the large part of the Far East (figure S8), and
hence plays a smaller role in shaping the observed pre-
cipitation trends in this region (table S3). The diversity
in the obtained regional responses is linked with the
nonlinearity of the temperature—precipitation and
instability—precipitation relationships that are deter-
mined by atmosphere dynamics and microphysics.
Atmospheric dynamics and microphysics are sup-
posed to be important for the observed redistribution
between two types of precipitation over NE. In part-
icular, atmospheric fronts frequency changes (Berry
et al 2011a), together with changes in the number of
extremely strong fronts (Schemm et al 2017), may
influence the balance between convective and strati-
form precipitation. The increase in the frequency of
strong fronts in summer (Schemm et al 2017) (when
cold fronts are prevailing (Berry et al 2011b)) may
result in an increased role of convective precipitation.
The poleward shift of storm tracks (Mokhov et al 2009,
Bender et al 2012, Eastman and Warren 2013), espe-
cially pronounced in winter, leads to a decrease in
large-scale (stratiform) precipitation in southern
regions of NE and to an increase in central and north-
ern regions. This tendency has been confirmed with
the presented results that showed an increase in strati-
form precipitation in the north and center of the Eur-
opean part of Russia. In line with this, while the
transportation of atmospheric moisture in Northern
Eurasia does not show significant trends, the relative
contribution of the transient eddies does show a sig-
nificant increase from 1979 onwards (Dufour et al
2016). Regional and local processes may also play a
role. Specifically, the increasing intensity of the Siber-
ian High leads to a decline in stratiform clouds and
associated precipitation in the south of NE in winter
(Chernokulsky et al 2013). Near the Black Sea, sea sur-
face temperature warming leads to tropical-like con-
vection development (enhanced by orography) that
yields heavy and devastating showers (Meredith et al
2015a, 2015b). At the western Arctic coast, convective
precipitation may have positive trends in the cold part
of a year associated with intensified cold air outbreaks
(and the consequent development of convection) due
to sea-ice retreat (Esau and Chernokulsky 2015).
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Figure 7. Mann—Kendall correlation coefficient between detrended time series of summer Pcopy (), Psirat (D), P95cony (€), P95strat (d),
and frequency of CAPE > 100 J kg™ in summer (from ERA-Interim data (Dee et al 2011) that is calculated for the reanalysis grid
boxes that include the meteorological station locations) for the 1979-2016 period. Coefficients are shown only for the 326 stations that

passed at least one of the tests on artificial instant reversal absence.

Tropospheric aerosols may also have regional effects
since they diversely influence convective and strati-
form precipitation (Tao et al 2012). Ongoing varia-
tions in aerosol properties (see e.g. Chin et al 2014,
Zhao et al 2017) may alter precipitation character-
istics, especially over polluted regions like the south of
the Far East (Kinne et al 2013) where the largest trends
in convective precipitation are found.

The observed change in NE precipitation structure
is an important regional consequence of global climate
change that may influence the regional water cycle.
Redistribution of total precipitation between convective
and stratiform types is likely a result of a delicate balance
among various causes including thermodynamics,
dynamics, and microphysics. Further analysis based on
various observations (surface, weather radars, satellites)
and specially conducted model simulations is needed to
disentangle the role of individual drivers in the dis-
covered precipitation redistribution in order to attri-
bute the revealed tendencies to climate change and
internal climate variability.
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