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ABSTRACT

This paper evaluates several daily precipitation products over western and central Europe, identifies and

documents their respective strengths and shortcomings, and relates these to uncertainties associatedwith each

of the products. We analyze one gauge-based, three satellite-based, and two reanalysis-based products using

high-density rain gauge observations as reference. First, we assess spatial patterns and frequency distributions

using aggregated statistics. Then, we determine the skill of precipitation event detection from these products

with a focus on extremes, using temporally and spatially matched pairs of precipitation estimates. The results

show that the quality of the datasets largely depends on the region, season, and precipitation characteristic

addressed. The satellite and the reanalysis precipitation products are found to have difficulties in accurately

representing precipitation frequency with local overestimations of more than 40%, which occur mostly in dry

regions (all products) as well as along coastlines and over cold/frozen surfaces (satellite-based products). The

frequency distributions of wet-day intensities are generally well reproduced by all products. Concerning the

frequency distributions of wet-spell durations, the satellite-based products are found to have clear deficiencies

for maritime-influenced precipitation regimes. Moreover, the analysis of the detection of extreme pre-

cipitation events reveals that none of the non-station-based datasets shows skill at the shortest temporal and

spatial scales (1 day, 0.258), but at and above the 3-day and 1.258 scale the products start to exhibit skill over

large parts of the domain. Added value compared to coarser-resolution global benchmark products is found

both for reanalysis and satellite-based products.

1. Introduction

Global warming is expected to change precipitation

characteristics, including frequency and intensity of ex-

tremes (Trenberth et al. 2003; Allan and Soden 2008;

Seneviratne et al. 2012; Collins et al. 2013). Because

these changes affect water resource management, agri-

culture, and infrastructure planning, a better monitoring

of precipitation patterns, variability, and changes is re-

quired, including a better understanding of the physical

mechanisms leading to precipitation extremes (Collins

et al. 2018). Especially, the event-like nature of precip-

itation and its strong clustering in space and time re-

quires high-quality precipitation products with high

spatial–temporal resolution.

In situ precipitation data from ground-based gauges

often extend back to the beginning of the twentieth

century or even earlier (e.g., Brienen et al. 2013), butCorresponding author: M. Lockhoff, maarit.lockhoff@dwd.de
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might be inhomogeneous due to station relocations and

terminations or change of instrumentation. They are

also coarsely distributed in space, and often suffer from

missing data even over relatively densely sampled

areas like Europe (Zolina et al. 2014). Consequently,

continental-scale studies based on gauge observations

(e.g., Klein Tank and Können 2003; Zolina et al. 2009)

only provide reliable estimates of variability patterns

in areas with dense observation networks.

Satellite-based products, available since the late

1970s, have therefore become a complementary and/or

alternative data source with spatially homogeneous es-

timates and almost global coverage. Satellite observa-

tions are, however, only indirectly related to surface

precipitation by the interaction of radiation with hy-

drometeors in the whole atmospheric column or with

precipitation-generating clouds. Retrieval algorithms

can be classified (Kidd and Levizzani 2011) according to

wavelength band and its use into 1) scattered solar

[visible (VIS) and near-infrared (NIR)] and emitted

thermal infrared (IR) radiation, 2) emitted (and

scattered) passive microwave (PMW) radiation and

backscattered radar-emitted active microwave (AMW)

radiation, and 3) multisensor methods. VIS/NIR and/or

IR-based retrievals associate cloud albedo and cloud-

top temperature statistically with precipitation rate.

Accordingly, they are much less accurate for instanta-

neous estimates than PMW methods, which exploit

radiation interacting directly with precipitation-sized

hydrometeors. Because VIS and/or IR and/or NIR

observations are typically collected from geostationary

orbits (GEOs; e.g., Meteosat, GOES), related prod-

ucts benefit from a much higher temporal resolution

(30–15min) compared to the PMW-based products.

The latter are only operated on low-Earth orbits [LEOs;

e.g., Special Sensor Microwave Imager (SSM/I) and its

follow-on instruments; Advanced Microwave Scanning

Radiometer (AMSR-E)], which allow only for about

three observations per day and satellite. As GEO-VIS/

NIR/IR and LEO-PMW algorithms complement each

other in terms of temporal resolution and accuracy, they

are often combined into merged product like the

NOAA Climate Prediction Center Morphing product

(CMORPH; Joyce et al. 2004) and the Global Pre-

cipitation Climatology Project One-Degree Daily

product (GPCP1DD; Huffman et al. 2001). For more

details on satellite-based rainfall estimation methods,

see, for example, Petty (1995), Adler et al. (2001),

Kidd (2001), and Kidd and Levizzani (2011).

Data assimilation–based reanalyses also cover long

periods (typically since the 1970s) and provide many

climate system state variables including surface precip-

itation. Reanalyses combine observations and a numerical

model using a ‘‘frozen’’ (temporally stable) data assim-

ilation system, with the model serving as an intelligent

interpolator between sparse observations. Hence, the

output may encompass the complete set of (modeled,

and thus physically consistent) climate state variables at

model resolution and is available over both land and sea

(like satellite-based products). Precipitation is mostly

not assimilated [still an exception are recent regional

high-resolution reanalyses (e.g., Wahl et al. 2017) and,

e.g., the global NCEP-2 reanalysis (Kanamitsu et al.

2002)] and the output precipitation fields are therefore

only constrained by other observations. The first re-

analyses were produced in the early to mid-1990s with

global coverage at rather coarse resolutions (e.g.,

NCEP-1 with ;28 spatial resolution). Subsequent re-

leases have benefited from model improvements and

increasing spatial resolution. Recently, a first segment of

the ERA5 dataset [which will replace the ECMWF in-

terim reanalysis (ERA-Interim)] became available on a

30-km grid. Regional reanalyses make use of limited-

area models with even higher grid resolution, which

better represents soil–atmosphere interactions, oro-

graphic effects, land-use effects, and land–ocean con-

trasts and better simulates smaller-scale processes

(Bach et al. 2016; Dahlgren et al. 2016).

All products have specific uncertainties and limita-

tions, which should be quantified, for example, via

comparisons with high-quality reference data. The

International Precipitation Working Group (IPWG)

evaluated many satellite-based precipitation products

(e.g., Ebert et al. 2007; Turk et al. 2008; Sapiano and

Arkin 2009) and quantified their performance depend-

ing on season, region, and elevation/topography. The

performance of satellite-based products is often found

to be affected by both topography and season, but

evaluation results also quite strongly reflect the type of

observation chosen as reference. For example, Stampoulis

and Anagnostou (2012) found PMW-based products to

generally overestimate (underestimate) ground-based

gauge observations in Europe over low-elevation area

during the warm (cold) season. Using radar-based ob-

servations over northwestern Europe as a reference,

Kidd et al. (2012) found all considered satellite prod-

ucts (both IR- and PMW-based) to underestimate

precipitation in all seasons. The quality of both satel-

lite- and model-based products usually deteriorates

with increasing rainfall intensity (Ebert et al. 2007;

AghaKouchak et al. 2011; Stampoulis and Anagnostou

2012; Lockhoff et al. 2014). However, Lockhoff et al.

(2014) demonstrated that for extreme precipitation the

detection skill of satellite retrievals considerably in-

creases with increasing temporal and spatial scales. In

general, NWP-based products outperform satellite-based
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products during winter and in the midlatitudes (Ebert

et al. 2007; Kidd et al. 2012).

The global reanalyses generally suffer from a too high

occurrence of wet days and too low rainfall intensities,

because precipitation generation cannot be resolved by

the coarse model and is thus parameterized (Trenberth

et al. 2003; Sun et al. 2006). Accordingly, reanalyses

have in particular difficulties with small-scale convective

precipitation but capture frontal rainfall well (Trenberth

et al. 2003; Sun et al. 2006). Gehne et al. (2016) and

Trenberth et al. (2017) stress the importance of subdaily

time scales for precipitation extremes. Over Europe,

global products generally overestimate low and un-

derestimate high precipitation intensities (Zolina et al.

2004). Studies involving regional reanalyses concen-

trate on individual countries [Bollmeyer et al. (2015),

for Germany] or small regions. For example, Isotta

et al. (2015) found for Europe that the evaluated re-

gional reanalyses overestimate mean precipitation and

the frequency of wet days but underestimated the fre-

quency of heavy precipitation (95th percentile).

Overall, a comprehensive and comparative analysis of

continental-scale extreme precipitation from reanalyses,

satellite data, and in situ observations is missing. This

paper assesses the skill of high-resolution (0.258,
daily) regional reanalyses, recently updated versions

of satellite-based precipitation products, and an avail-

able ground-based product in representing precipitation

including extremes across central and western Europe

using high-density gauge-based estimates as reference.

We first assess the ability of the different datasets to

represent spatial precipitation patterns and frequency

distributions by using aggregated (multiyear) statistics.

Besides mean, intensity and wet-day frequency we

consider wet-spell duration. We also assess the scale-

dependent skill of detecting in particular (wet) ex-

tremes, based on temporally and spatially matched

pairs of precipitation estimates. The datasets to be

evaluated and the reference dataset are described in

section 2. Section 3 details the analysis methodology,

and in section 4 the comparison results are presented.

A discussion of the results is provided in section 5,

and a summary is given in section 6 together with some

concluding remarks.

2. Data

We evaluate six precipitation datasets, hereinafter

referred to as candidate datasets: one based on rain

gauges, three based on satellite observations, and two

based on regional reanalyses for western and central

Europe and the years 2007–09. During these years the

reference data are available at a grid resolution of about

25 km. We selected daily (or better) precipitation data-

sets with spatial resolutions of 0.258 or better covering
western and central Europe. When we assess the scale

dependent skill in detecting precipitation events we also

determine the added value of these high-resolution

datasets against two global lower-resolved datasets

(benchmarks datasets). Table 1 provides an overview

of the main characteristics of the datasets (reference,

candidate, and benchmark) with references.

a. Reference dataset

Our reference—the station dataset of the European

Centre for Medium-Range Weather Forecasts (ECMWF;

Fig. 1, top, subsequently referred to asECMWF)—contains

daily land precipitation accumulations for the years

2002–09 on a reduced Gaussian grid. Its highest resolu-

tion (N400) of;25km (0.2258) is available fromOctober

2006 until the end of 2009. The observations cover

mostly central, western, and northern Europe with

roughly 10 000 stations (Ghelli and Lalaurette 2000),

which are gridded by simple area averaging. In a pre-

liminary analysis of the correlations between the daily

precipitation time series for each grid box from

ECMWF and the E-OBS dataset, we foundmuch lower

correlation values than expected ranging between 0.3

and 0.6. Therefore, we checked the effect of shifting the

ECMWF data by one day forward or backward (with

respect to E-OBS). We found that by shifting the

ECMWF data forward in time by one day, we obtained

much higher correlations (;0.8) for all countries (ex-

cept Norway). This revealed the problem generally

related to gauge data of whether the 24-h precipitation

total recorded, for example, as 1 January 2007 corre-

sponds to the precipitation that fell on that date, or if

this was the date the observation was made (often at

0900 hours local time). We addressed this issue by

shifting the data according to the shift yielding highest

correlation with respect to E-OBS: this resulted

in shifting the ECMWF data forward in time by one

day for all grid boxes except for Norway. Here shifting

the data forward by two days showed the highest

correlations.

We did not consider other high-resolution gridded

station datasets as, for example, Spatial and Temporal

Scales andMechanisms of Extreme PrecipitationEvents

over Central Europe (STAMMEX; Zolina et al. 2014)

due to their limed spatial coverage (e.g., STAMMEX is

restricted to Germany).

b. Ground-based estimates

The E-OBS dataset (Haylock et al. 2008) provided by

the Royal Netherlands Meteorological Institute (KNMI)

differs from the reference dataset in terms of spatial and
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temporal coverage, the number of stations used, and the

gridding method. E-OBS covers a larger (than ECMWF)

land area between 258 and 758N and between 408W and

758E but only has around 7500 stations; thus, station

density (see Fig. 1, bottom) is on average much lower

compared to ECMWF (around 1600 stations within our

study area compared to ;10 000 for ECMWF. E-OBS

station densities are highest over Germany and the

Netherlands and lower over France, Spain, and Portugal.

We use version 10.0 with a 0.258 spatial resolution.
E-OBS interpolates based on ordinary kriging of

daily precipitation anomalies that are added to the

monthly totals using three-dimensional thin-plate

splines (Haylock et al. 2008).

Both ECMWF and E-OBS carry uncertainties due to

gauge measurement errors, lacking wind corrections, and

possible station relocations. E-OBS suffers from the

temporally and spatially inhomogeneous sampling den-

sity, which affects area averages estimates in terms of

representativeness and oversmoothing effects (Haylock

et al. 2008;Hofstra et al. 2010). The latter occurs whenever

stations outside of a grid box are used for the estimation of

the grid average in case of sparse station densities (Hofstra

et al. 2010). Zolina et al. (2014) demonstrated impacts of

temporary varying data coverage in E-OBS on long-term

tendencies in precipitation characteristics using data from

a very dense German network of Deutscher Wetterdienst

(DWD; German Weather Service).

c. Satellite-based estimates

We evaluate the Precipitation Estimation from Re-

motely Sensed Information Using Artificial Neural

Networks–Climate Data Record (PERSIANN-CDR),

the TRMMMultisatellite Precipitation Analysis (TMPA)

3B42RT (Real Time) dataset (TMPA3B42 RT), and

the National Oceanic and Atmospheric Administra-

tion’s (NOAA) Climate Prediction Centre morphing

(CMORPH) dataset, which all have a spatial resolution

of 0.258 3 0.258. The datasets differ with respect to data

sources (type of satellite sensors, use or not of rain

gauge information) and blending approach.

The PERSIANN-CDR product (Ashouri et al. 2015)—

subsequently referred to as PERSIANN—is the only sat-

ellite product used, which solely relies on IR input; its op-

erational version additionally considers PMW input. The

GPCP monthly 2.58 product, which includes multisatellite

(IR and PMW) and land gauge information (version 2.2;

Adler et al. 2003), is used for correcting the (monthly)

biases. PERSIANN comes as daily accumulation and

with a spatial resolution of 0.258 in the latitude band 608N–

608S covering the years from 1983 to present.

The TMPA3B42RT product (subsequently referred

to as TMPA) combines the merged microwave (MW;

3B40) and MW-calibrated IR (3B41) products, and

is provided at 0.258 spatial and 3-h temporal resolution

(Huffman et al. 2007). TMPA provides instantaneous

precipitation estimates in millimeters per hour at 0000,

0300, 0600, 0900, 1200, 1500, 1800, and 2100 UTC and is

processed without gauge correction between 608N and

608S; estimates north of 508N and south of 508S are

flagged for lower quality. The calibrated product is re-

stricted to 508N and 508S and was therefore not selected

although it is consideredmore accurate (at least in terms

of bias). We used version 7, for which the retrieval and

analysis system was processed back to 1 March 2000.

CMORPH precipitation estimates are based on

PMW-based observations, which are then propagated

by motion vectors derived from geostationary satellite

IR data (Joyce et al. 2004). We use the reprocessed

product (CMORPH version 1) based on a fixed algo-

rithm applied to the same inputs to ensure homogeneity.

The original product is created on an 8-km grid at half-

hourly time resolution; 3-hourly and daily products

with 0.258 spatial resolution are also generated.

FIG. 1. Station density (number of stations within each 0.258 3
0.258grid box) of gridded 24-h precipitation accumulations

(top) produced by ECMWF and for (bottom) E-OBS for the

years 2007–09.
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CMORPH is available between 608N and 608S starting

in 1998. In this study, the 0.258daily raw (satellite-only

precipitation estimates, no bias correction applied)

dataset was used. The raw version of CMORPH was

chosen in order to ensure better comparability to TMPA

(for which the noncalibrated RT version was chosen as

well). The selection of satellite-only versions has the

advantage of making these dataset more independent of

the other candidate datasets.

d. Reanalysis-based estimates

We evaluate the Consortium for Small-ScaleModeling

(COSMO)-based reanalysis (Bollmeyer et al. 2015) de-

veloped by the Climate Monitoring branch of DWD’s

Hans-Ertel Centre forWeather Research project (HErZ;

Simmer et al. 2016)—subsequently referred to as

HERZ—and the High Resolution Limited Area Model

(HIRLAM) reanalysis (Dahlgren and Gustafsson 2012)

provided by the Swedish Meteorological and Hydrologi-

cal Institute (SMHI)within the frameworkof theEuropean

Reanalysis and Observations for Monitoring (EURO4M)

project.

The HERZ reanalysis is based on the limited-area

nonhydrostatic NWP model COSMO [formerly known

as Lokal Modell (LM); Steppeler et al. 2003; Brdar et al.

2013] and applies the nudging data assimilation tech-

nique for conventional observations only without pre-

cipitation. The data assimilation also includes external

analyses of snow, sea surface temperature, and a varia-

tional soil moisture analysis, which uses 7 vertical layers

over a depth of approximately 14.5m. Lateral boundary

conditions are taken from ERA-Interim. The model

output covers theCORDEX-EUR11 domain (Giorgi et al.

2009), extending from about 228W to 458E and from

278 to 728N at a 6-km spatial resolution and a 3-hourly

interval for three-dimensional and 1-hourly interval for

two-dimensional output.

The HIRLAM reanalysis is produced using the hydro-

static HIRLAM forecast model and three-dimensional

variational data assimilation (3D-Var) system (Dahlgren

and Gustafsson 2012). Output is produced at 0.28
(;22 km) grid resolution for 6-hourly intervals over

Europe. Again, only conventional in situ observa-

tions are assimilated and boundary conditions are taken

from ERA-Interim.

Since precipitation observations are not assimilated

in the models, large differences between their precipita-

tion fields may occur. Further discrepancies may arise

from the differences in the assimilated observation data-

sets, model resolution and parameterizations, assimila-

tion method (variational or nudging), and the general

model setting (hydrostatic versus nonhydrostatic). Blending

models with observations by assimilating them is therefore

a way to further constrain the models and improve the

quality of reanalyses-based precipitation estimates.

e. Benchmark datasets

The higher-resolution regional datasets are compared

to two commonly used lower resolution global bench-

mark datasets in the second part of our analysis, where

we focus on the scale dependent skill in detecting pre-

cipitation events. These are the GPCP1DD dataset and

ERA-Interim.

GPCP1DD (version 1.2; Huffman et al. 2001), avail-

able fromOctober 1996 onward, is a globalmultisatellite

product at 18 spatial resolution. Input varies with time

and region: the Threshold-Matched Precipitation Index

(TMPI) is used for the latitude belt from 408N to 408S
and the scaled TOVS-AIRS (IR sounders) estimates are

used for latitudes higher than 408N/S. The daily esti-

mates are scaled such that they sum up to the GPCP

monthly product. The latter includes gauge information;

thus, the daily product over land indirectly includes

gauge information.

ERA-Interim is the global 4D-Var-based reanalysis

provided by ECMWF (Dee et al. 2011) at 0.78 (;75km)

resolution on 60 vertical levels from the surface up to

0.1 hPa, which makes use of observations from a wide

variety of satellite instruments in addition to meteoro-

logical observations. As for the regional reanalyses,

precipitation observations are not assimilated, but total

precipitation forms part of the accumulated forecast

parameters, accumulated from the start of the forecast

(twice daily starting at 0000 and 1200 UTC). ERA-

Interim 12-hourly precipitation accumulations were re-

trieved from ECMWF’s Meteorological Archival and

Retrieval System (MARS) archive at 18 resolution.

f. Data processing

Precipitation estimates of the datasets were converted

into daily accumulations from 0000 to 2400 UTC and

remapped onto a common 0.258 grid, which is the native

grid for E-OBS, PERSIANN, TMPA, and CMORPH.

Spatial interpolation, which might influence, for exam-

ple, the number of wet days of neighboring dry grid

points, is avoided if possible. The higher-resolved

HIRLAM and HERZ data were converted to the 0.258
grid by averaging over those grid points with centers

within the coarser grid. For the slightly coarser-resolved

ECMWF grid boxes we applied triangulation to convert

their reduced Gaussian grid to the regular 0.258 grid.
For the coarser-resolution benchmark datasets, ERA-

Interim and GPCP1DD, we attributed the value of their

18 grid boxes to the four 0.25 grid boxes contained

therein. For gauge-based products a day is typically

defined as the period between 0900 and 0900 hours local
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time, owing to the reading times of the gauges (Haylock

et al. 2008); thus accumulation times for ECMWF and

E-OBS are shifted by 9 h. For HERZ, HIRLAM, and

ERA-Interim 6-hourly (0000, 0600, 1200, 1800 UTC)

and 12-hourly (0000 and 1200 UTC) accumulations,

respectively, were aggregated into daily estimates. For

TMPA daily estimates were derived assuming that the

eight instantaneous rain rates at 0000, 0300, 0600, 0900,

1200, 1500, 1800, and 2100 UTC are representative for

3-h periods centered at the respective synoptic time. Thus,

the rain rates at 0300 UTC were attributed to 0200, 0300,

and 0400 UTC. The rain rates for 2300 UTC of each day

consequently stem from the 0000 UTC rain rates of the

next day (which are additionally attributed to 0000 and

0100 UTC).

We restricted the comparison to the region covered by

the ECMWF data and south of 608N, which is the north-

most coverage of PERSIANN, TMPA, and CMORPH.

Only those grid points were considered, which have at

least one station and a maximum of 20% missing days

(data gaps) in the ECMWF data record. Note that

Zolina et al. (2005) reported that even 30%–40%gaps in

daily station records are acceptable for climatological

assessments. For some countries there were only pre-

cipitation values available but no information on the

number of station (e.g., Norway). In these cases, the

number of stations per grid box was set to 1, in order to

still be able to include the data in the comparison. Fi-

nally, the comparison period is restricted to the period

from January 2007 to December 2009 for which com-

plete years of the reference data with highest spatial

resolution are available.

3. Methodology for comparative assessment

First, we compared spatial precipitation patterns and

frequency distributions, and then we analyzed the scale-

dependent skills of the datasets to detect and quantify the

individual precipitation events. We used a threshold of

1mmday21 to distinguish between wet and dry days,

which excludes very light precipitation from our analy-

sis—a very uncertain parameter in both ground-based

datasets (Klein Tank and Können 2003; Zolina et al.

2010) and reanalyses (Haiden et al. 2012). Precipitation

statistics are also provided separately for the four seasons

defined as follows: winter [December–February (DJF)],

spring [March–May (MAM)], summer [June–August

(JJA)], and autumn [September–November (SON)].

a. Spatial precipitation patterns and frequency
distributions

For the assessment of spatial patterns and frequency

distributions we used:

d MEAN (mmday21): average over all days;
d INT (mmday21): average over all wet days;
d NWET (days): number of wet days;
d Q10, Q90, etc. (mmday21): 10th, 90th, etc. percentiles

estimated from the empirical wet-day distributions;
d WSs and DSs (days): wet-spell and dry-spell length

quantified as number of consecutive wet days and dry

days, respectively;
d Bias ratio (unitless): average of each candidate dataset

divided by the average of the reference (ECMWF);
d PDF (unitless): empirical frequency distributions of

daily precipitation; and
d CDF (unitless): cumulative frequency distributions of

daily precipitation.

MEAN, INT, and NWET are standard precipitation

measures. The empirically estimated percentiles assess

the consistency of the precipitation distributions be-

tween the candidate and reference data. WS/DS dura-

tions (consecutive wet/dry days) are closely related to

water availability within a region (Zolina et al. 2010,

2013). The bias ratio quantifies the similarity of the

above characteristics between different dataset, and the

nonparametric Kolmogorov–Smirnov (KS) test (see

Wilks 2006) is used to quantify the agreement between

the (cumulative) frequency distributions. Results are

computed for each grid box in order to avoid data

pooling across climate zones.

WS/DS durations were averaged over areas following

the climate zones of the 18 map by Kottek et al. (2006),

who generated an updated Köppen–Geiger world map

of climate classification based on datasets from the Cli-

matic Research Unit (CRU) of the University of East

Anglia and theGlobal Precipitation Climatology Centre

(GPCC) at the GermanWeather Service; all 0.258 boxes
within a 18 grid box were assigned the same 18 value. The
resulting climate map distinguishes three main climate

types for Europe: the dominant warm temperate type

(C), the cold/snow (D), and polar climates (E) with the

oceanic subtypes the most dominant. We then selected

four countries, which belong to only one of the climate

subtypes. By selecting countries—and not the complete

climate subtypes—we avoid potential internal spatial

inhomogeneities caused by, for example, different na-

tional observation strategies:

d Great Britain (BRT): oceanic humid subtype of the

temperate climate zone (Cfb);
d Germany (GER): same as BRT, but including a

transition zone to continental climate (Cfb);
d Romania (ROM): warm summer humid continental

climate (Dfb); and
d Iberian Peninsula (ESP): dry summer subtypes of the

temperate climate zone (Csa/Csb).

JUNE 2019 LOCKHOFF ET AL . 1129

Unauthenticated | Downloaded 11/10/22 12:03 PM UTC



b. Extreme precipitation events

Lockhoff et al. (2014) showed that gridbox-by-gridbox

comparisons are not suitable for evaluating the skill

to detect precipitation extremes, as exact matching in

terms of location and timing of the event is required.

Fuzzy verification methods allow slight (temporal and/

or spatial) displacements and thereby avoid the double

penalty effect (Ebert 2008). This is done by defining

(temporal and/or spatial) neighborhoods around the

individual grid boxes and/or single time steps. The

number of grid boxes and time steps determine the size

of the resulting 2D/3D neighborhood and hence the

space–time scale: for example, a neighborhood covering

3 grid boxes (in each direction) and 3 days results in a

total of 3 3 3 3 3 5 27 values and hence a 0.758 space
and 3-day time scale (when starting from 0.258 spatial
and 1-day temporal resolution). Following Lockhoff

et al. (2014), we used the fractions skill score (FSS;

Roberts and Lean 2008) to assess the skill of the can-

didate datasets to represent the occurrences of extreme

precipitation compared to the reference. An event is

defined by the use of a threshold. The FSS score then

directly compares the fractional coverage of events in

the defined space–time neighborhood. The more similar

the frequency of the event, as seen by the candidate

dataset, is to the frequency obtained from the reference

the larger the FSS score. We analyzed different per-

centile thresholds of daily precipitation (e.g., 90th, 95th,

etc.) estimated from the sample of all wet days for dif-

ferent seasons in the analyzed time period (2007–09).

For a continental-scale analysis this approach is more

appropriate as compared to using fixed thresholds (see

Groisman et al. 2005). Different maximum displace-

ments between the location (0.258, 0.508, 0.758, etc.) and
timing (1, 2, 3, etc. days) of precipitation extremes were

analyzed. For each selected space–time scale (maximum

displacement) and threshold (e.g., Q90) the daily precip-

itation accumulations from a candidate and the reference

dataset were converted to fractions (frequencies of ex-

treme events). For example, 4 grid boxes exceeding the

selected thresholdwithin a 3-day and 33 3 (0.258) gridbox
neighborhood results in a fraction of 4/(33 33 3); 0.15.

These fractions were used to calculate the FSS, which

ranges between 0 (complete mismatch) to 1 (perfect

match). The FSSuseful represents the FSS value above

which the assessed candidate dataset is considered to have

useful skill. The magnitude of FSSuseful is defined as being

halfway between a random skill, represented by the av-

erage fraction of extreme events observed by the reference

dataset at a specific grid point over the entire time period,

and perfect skill, that means FSS equal to 1 (Roberts and

Lean 2008). The FSSuseful definition thereby accounts for

a change in skill that might be obtained as a result of a

change in the event frequency (higher frequencies tend

to give greater skill). For details, see Lockhoff et al.

(2014, and references therein).

4. Results

a. Precipitation patterns and frequency distributions

The candidate datasets capture the spatial patterns of

MEAN, INT, and NWET during the summer months

generally well compared to the reference, however,

specific differences are also observed (Fig. 2). For ex-

ample, HIRLAM tends to overestimate MEAN, INT,

and NWET, whereas TMPA and CMORPH tend to

underestimate MEAN and NWET in certain areas, for

instance, over the United Kingdom. Differences in

MEAN might result from problems in detecting pre-

cipitation (see NWET) and/or from estimating the av-

erage precipitation for wet days (see INT), reflected by

the bias ratios (BR) for NWET and INT, respectively

(Fig. 3). Sign and magnitude of the discrepancies differ

largely among the candidate datasets and between dif-

ferent regions. For most datasets, the MEAN-BR maps

are similar to the NWET-BR maps; thus, precipitation

detection is the main cause for the identified differences

in mean precipitation (see also Table 2). Only for

E-OBS the BR for INT (domain average 0.91) differs

somewhat more from 1 than BR for NWET (domain

average 1.06). E-OBS performs best over Germany,

where the station density is largest but slightly un-

derestimates MEAN over France and slightly over-

estimatesMEAN over the United Kingdom. HIRLAM

and PERSIANN generally overestimate the occurrence

of precipitation across the study area (domain aver-

age BR of NWET of 1.40 and 1.54, respectively) with

highest values over Spain, the Mediterranean coast, and

Romania. TMPA and CMORPH underestimate the

occurrence of precipitation in northwestern Europe,

especially along the coastlines and overestimate its oc-

currence over southeastern Europe. Underestimation

dominates, however (domain average BR of NWET of

0.86 for TMPA and 0.96 for CMORPH). Interestingly,

the reanalyses HERZ and HIRLAM differ concerning

the detection of precipitation: while HIRLAM over-

estimates its occurrence (domain average BR of

NWET-BRof 1.40), HERZonly slightly underestimates

its occurrence (domain average BR of NWET of 0.92).

HERZ demonstrates the largest underestimation of

precipitation occurrence over the Iberian Peninsula (up

to 20%), especially along the southern coast. This region

with typically rare precipitation is also characterized by

biases in the other datasets with over- or underestimations
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FIG. 2. Multiyear (left) MEAN, (middle) INT, and (right) NWET (here shown as wet-day frequency, thus

relative to the total number of wet days) as represented by the reference (ECMWF) and the candidate

datasets for the summer seasons (JJA) of the years 2007–09.
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of NWET of up to 50% and larger (especially PER-

SIANN and HIRLAM). Domain average statistics for

daily rainfall statistics for all candidate datasets are

summarized in Table 2.

In winter E-OBS and the two regional reanalyses

generally perform similar or better than in summer,

while for the satellite-based datasets opposite tendencies

can be observed (see Table 2). For the at least partially

PMW-based products (CMORPH and TMPA) the

performance decreases in winter compared to sum-

mer with the largest underestimation of precipitation

found for CMORPH (up to 80% for MEAN). For the

FIG. 3. Bias ratio for (left) MEAN, (middle) INT, and (right) NWET for the candidate datasets for the summer

seasons (JJA) of the years 2007–09.

1132 JOURNAL OF HYDROMETEOROLOGY VOLUME 20

Unauthenticated | Downloaded 11/10/22 12:03 PM UTC



IR-based PERSIANN the performance even slightly

improves during winter. This is surprising as IR-based

retrievals are expected to perform better in summer

when most precipitation comes from deep convective

clouds that can be easily identified in IR channels (Petty

1995), whereas in winter precipitation comes more often

from large-scale frontal systems that are more difficult

to identify from IR channels.

We turn now to the analysis of probability distributions

of daily precipitation. Figure 4 presents the probability

distributions of precipitation intensity during summer for

low (up to 25th percentile) and high (larger than 25th

percentile) intensities. For low precipitation intensities

the datasets are within 610% of the reference. Both

E-OBS and HIRLAM overestimate the intensities while

the satellite-based datasets and HERZ have lower in-

tensities. For high and extremely high precipitation in-

tensities (.95th percentile) discrepancies up to 25% are

foundwith E-OBS (25%) andCMORPH (12%) showing

largest under- and overestimation, respectively. TMPA

and both reanalyses closely agree with the reference.

According to the gridbox-basedKS test, all products have

distributions consistent with the reference at the 5%

significance level everywhere (not shown here), except

for CMORHduring wintertime, when the null hypothesis

of the KS test (distribution of the candidate dataset and

the reference disagree) is accepted over large parts of the

study area. For the other datasets this is only the case for a

few isolated grid boxes, for example, for E-OBS over

France, HIRLAM over the southern United Kingdom,

and PERSIANN over the United Kingdom and

Germany.

Following Zolina et al. (2013), we analyzed the

probability distributions of WS durations. Figure 5

shows distributions of WS durations normalized to the

total number of wet days for the four selected climate

regions (BRT, GER, ROM, and ESP; see section 3) for

summer and winter. The reference dataset reveals

region-characteristic shapes. The distributions for BRT

are rather flat without any pronounced peak in both

seasons. For GER the distributions are somewhat

steeper, especially in winter. The distributions for ESP

are steepest and left skewed with pronounced peaks at

1–2-day spell durations (each around 30%) but slightly

flatter in winter than in summer. The distributions for

ROM are similar to ESP also with a pronounced peak

at the 1–2-day spell duration both in summer and in

winter. The ability to capture these characteristic shapes

varies across the datasets analyzed. Thus, the station-

based datasets (E-OBS) and the two regional reanalyses

capture the shapeswell for both the convective/continental

and ocean-influenced regions. The satellite-based

datasets reproduce the distribution shapes for con-

vective regimes (ESP, ROM) relatively well, but

TABLE 2. Statistics of daily rainfall accumulation (mmday21) averaged over the entire domain and time period (2007–09) separately per

season (summer, winter, and annual values); INT_BIAS5mean bias of wet-day precipitation (mmday21), i.e., on days with rain rate$

1mm, WDAYS_BIAS5mean bias in the number of wet days (i.e., day with rain rate$ 1mmday21), MEAN_BIAS5mean bias of the

mean precipitation amount, P10_BIAS 5 mean bias of the 10th percentile (mmday21), P90_BIAS 5 mean bias of the 90th percentile.

INT_BIAS WDAYS_BIAS MEAN_BIAS P10_BIAS P90_BIAS

Summer (JJA)

E-OBS 0.91 6 0.25 1.06 6 0.21 0.93 6 0.24 1.09 6 0.33 0.88 6 0.037

HIRLAM 1.07 6 0.27 1.40 6 0.84 1.49 6 1.27 1.02 6 0.20 1.08 6 0.55

HERZ 1.00 6 0.27 0.92 6 0.24 0.92 6 0.39 1.00 6 0.26 1.05 6 0.48

TMPA 0.97 6 0.30 0.86 6 0.65 0.84 6 0.53 1.01 6 0.44 1.02 6 0.46

CMORPH 1.04 6 0.30 0.96 6 0.96 1.03 6 0.87 0.95 6 0.19 1.13 6 0.55

PERSIANN 1.02 6 0.40 1.54 6 1.04 1.37 6 0.85 1.29 6 0.73 0.98 6 0.43

Winter (DJF)

E-OBS 0.91 6 0.22 1.07 6 0.16 0.96 6 0.29 1.01 6 0.20 0.89 6 0.25

HIRLAM 0.97 6 0.19 1.27 6 0.28 1.2 6 0.35 0.99 6 0.16 0.95 6 0.24

HERZ 0.99 6 0.16 1.06 6 0.20 1.1 6 0.24 1.00 6 0.16 0.99 6 0.21

TMPA 1.0 6 0.33 0.54 6 0.30 0.57 6 0.41 1.04 6 0.23 1.15 6 0.48

CMORPH 0.51 6 0.16 0.29 6 0.15 0.17 6 0.091 0.87 6 0.16 0.52 6 0.24

PERSIANN 1.0 6 0.28 1.48 6 0.41 1.46 6 0.50 0.97 6 0.15 1.07 6 0.37

Annual values

E-OBS 0.90 6 0.15 1.07 6 0.12 0.94 6 0.19 1.02 6 0.12 0.87 6 0.18

HIRLAM 0.98 6 0.15 1.27 6 0.22 1.25 6 0.28 1.00 6 0.09 0.98 6 0.18

HERZ 0.97 6 0.12 0.98 6 0.12 0.96 6 0.17 0.98 6 0.08 0.98 6 0.15

TMPA 1.04 6 0.20 0.70 6 0.30 0.73 6 0.35 0.98 6 0.11 1.09 6 0.25

CMORPH 0.87 6 0.21 0.59 6 0.20 0.54 6 0.22 0.90 6 0.10 0.90 6 0.27

PERSIANN 0.96 6 0.25 1.40 6 0.36 1.28 6 0.30 1.02 6 0.16 0.97 6 0.29
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tend to overestimate the frequency of short WS du-

rations (1 and 2 days) and underestimate those for

longer durations (3 and 4 days). All satellite-based

datasets fail, however, to accurately replicate the WS

duration distributions in the humid regime (BRT).

During both seasons they largely overestimate the fre-

quency of short WS and underestimate those for long

durations. In winter the differences can be larger than in

summer except for PERSIANN, whose distribution is

close to those of the reanalysis datasets. This is also true

for the GER region, where E-OBS, the reanalysis

datasets, and PERSIANN are close to the reference.

The differences between the mean WS durations (not

shown here) are similar to those for NWET: if NWET

is overestimated also the mean WS duration is over-

estimated. Bias ratios for WS durations are generally

lower for all candidate datasets by up to 20%. In regions

where WS durations are shorter, the DS durations

tend to be longer, for example, in summer over ESP

(max;6) and ROM (max;5), and whereWS durations

tend to be longer the DS durations are shorter, for ex-

ample, over the United Kingdom (max ;1). The DS

durations from E-OBS and the reanalysis datasets agree

best with the reference dataset, while the satellite PMW-

based datasets tend to overestimate DS durations.

Similar to the WS analysis, DS durations from the

PMW-based datasets perform best in GER and ROM

in summer, fair in ESP, and fail in BRT.

b. Detection of (extreme) precipitation events

To assess the skill of detecting individual extreme

events, we analyzed collocation of individual precipita-

tion extremes in space and time in different datasets. For

this purpose, we used the FSS criterion (see section 3b)

derived from the (temporally and spatially) matched

daily estimates at 0.258 resolution. Figure 6 displays

domain-averaged FSS score values for Q90 for summer

as a function of spatial (y axis) and temporal (x axis)

scales for the candidate datasets. For the 1-day temporal

scale and 0.258 spatial scale, all datasets except E-OBS

have very low mean FSS values (#0.3). Hence, none of

the non-station-based datasets show skill in detecting

extreme precipitation events at the highest temporal and

spatial scale. The mean FFS for E-OBS is 0.52 with

around 60% of the grid boxes showing useful skill (i.e.,

FSS . FSSuseful). For all datasets FSS increases with

increasing temporal and spatial scales. In general, the

skills are more sensitive to the spatial scales rather than

to temporal scales. Thus, the skills increase to a lesser

extent with increasing the temporal scale than for in-

creasing the spatial scale. At the maximum temporal

scale (7 days) the domain average FSS values are be-

tween 20% and 35% below the skills for the maximum

spatial scale (2.258). Among the nonstation datasets

HERZ performs best. In summer at the 3-day scale and

1.258 spatial scale, its domain average FSS is about 0.68,

with about 90% of the grid boxes showing useful skill

(i.e., FSS. FSSuseful). For all other nonstation datasets,

similar FSS values are only observed at longer temporal

and larger spatial scales, for example, for HIRLAM

at 3 days and 1.758 (domain average FSS ;0.66), and

for CMORPH, TMPA, and PERSIANN at 7 days and

2.258 (domain average FSS ;0.67, ;0.66, and ;0.63,

respectively). All datasets exhibit a seasonal cycle in the

skill of detecting precipitation extremes. E-OBS and the

regional reanalyses perform better in winter (see Fig. 7)

than in summer while the satellite-based products per-

form better in winter. Among the non-station-based

datasets, HERZ shows the largest skill at all scales and

for both seasons. CMORPH and TMPAperform similar

FIG. 4. Frequency distribution of wet-day precipitation intensity for (left) low percentiles and (right) high per-

centiles for the summer seasons (JJA) of the years 2007–09.
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FIG. 5. Distributions of WS durations normalized to the total number of wet days for the four selected

climate regions BRT, GER, ESP, and ROM for the reference and candidate datasets for (left) JJA and

(right) DJF.
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FIG. 6. FSSs as a function of increasing temporal (x axis) and spatial (y axis) scales based on the 90th percentile

threshold for summer (JJA) of the years 2007–09 for the candidate and the benchmark datasets. The temporal scale

increases from left (original 1-day resolution) to right (7-day resolution), and the spatial scale from bottom (original

0.258 resolution) to top (2.258 resolution).
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FIG. 7. As in Fig. 6, but for winter (DJF).
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FIG. 8. Spatial distribution of the FSS for HERZ for increasing temporal (1, 3, 5, and 7 days) and spatial (0.258, 1.258, 2.258, and 3.258)
scales based on the 90th percentile threshold for summer (JJA) of the years 2007–09.
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to HIRLAM in the detection of summer Q90 events

from the smallest scales up to 3 days and 1.258, but
slightly worse above. PERSIANN has the lowest skill

in summer but outperforms the PMW-based satellite

products in winter (see Fig. 7).

The FSS of the candidate datasets for the different

scales can vary considerably in space, as shown exem-

plarily for HERZ in Fig. 8 for summer. At the starting

scale (i.e., 1 day and 0.258) only 10% of the grid boxes

have FSS values larger than FSSuseful. While the FSS

then, for example over Germany, rapidly increases

with increasing space–time scales, the values over

Romania change much more slowly. Figure 9 shows the

temporal (left) and spatial (right) scaling dependencies

of the FSS for summer for all candidate datasets for the

selected climate regions defined earlier (that is GER,

BRT, and ROM). The results for the ESP region are

not included as for many grid boxes the FSS could not

be calculated due to too few extreme events (minimum

is four).

E-OBS performs best over GER (top panels) where it

has the largest station density (FSS . 0.9 at 3 days and

1.258). Over ROM (bottom panels), where E-OBS has

much lower station densities, the FSS for 3 days and 1.258
ranges from 0.6 to 0.8 and from 0.4 to 0.7, respectively.

Over GER temporal scaling hardly effects the FSS (top-

left and middle-left panels), whereas spatial scaling still

leads to further improvement. For the other datasets

temporal scaling is always beneficial as they all differ

from the reference dataset with regard to the definition

of a day (in contrast to E-OBS). For BRT and GER

increasing the temporal scale beyond 3 days further

improves in FSS, but not for ROM. Finally, Fig. 9 also

illustrates that over GER and ROM the skills of

FIG. 9. (left) Temporal and (right) spatial scaling dependencies for the selected climate regions (top)

GER, (middle) BRT, and (bottom) ROM by the candidate datasets for summer (JJA) of the years

2007–09.
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individual satellite-based datasets are comparable or

better than those from the reanalyses.

To analyze the added value of the higher-resolution

datasets compared to the lower-resolution global bench-

marks datasets, we also show inFig. 6 (summer) andFig. 7

(winter) results of the global ERA-Interim reanalysis and

GPCP1DDdatasets, whichwere preprocessed as described

in section 2e. For summer (see Fig. 6), both regional re-

analysis datasets are more skillful than ERA-Interim at all

scales, except for the smallest 0.258 spatial scale. At this

scale, ERA-Interim has slightly larger FSS values than

both regional reanalysis datasets for all temporal scales

considered (i.e., 1–7 days). This feature hints at a double

penalty–related behavior due to small positioning errors

in the higher resolution datasets. The latter produce

often more realistic small-scale precipitation patterns

(e.g., convective precipitation dominating in summer),

which may be somewhat misplaced though. Once re-

laxing the requirement for exact (spatial) matching by

allowing slight displacements (that is increasing spatial

neighborhoods) the feature vanishes. Above the 0.758
spatial scale, HIRLAM performs similar or slightly better

than ERA-Interim whereas HERZ performs significantly

better than ERA-Interim. For satellite-based datasets,

summer season FSS values for GPCP1DD are similar to

those fromPERSIANN,while bothCMORPHandTMPA

outperform GPCP1DD at all scales. The differences are

larger for CMORPH than for TMPA and more pro-

nounced at smaller than at larger (time and space)

scales. The higher skill of the high-resolution satellite

products in detecting precipitation extreme events is

limited to the summer season though. In winter (see

Fig. 7), the skill of all satellite-based datasets is lower

than in summer. GPCP1DD reaches similar or even

slightly higher FSS values than PERSIANN, TMPA,

and CMORPH at all scales. For the reanalysis datasets,

the skill is higher in winter with HERZ performing best

at all scales. The skills from HIRLAM and ERA-

Interim are comparable but lower than for HERZ.

For example, at the 3-day temporal and 1.258 spatial

scale the FSS for HERZ is 0.79, for HIRLAM 0.70, and

for ERA-Interim 0.71. The additional benefit of the

regional reanalyses compared to the global ERA-

Interim reanalysis in detecting precipitation extremes

is hence larger in summer than in winter.

5. Discussion

Whenever the quality of datasets is assessed the

question arises of how these differences can be

explained. This question goes along with the ques-

tion about the uncertainties associated with the

revealed estimates and their comparability and also

relates to the independence of the reference and the

candidate datasets and the independence of the data-

sets among each other.

a. Uncertainties in the reference

It is important to bear in mind that the ECWMF data,

which represents the reference within this study, is also

prone to errors and uncertainties. In the case of gauge-

based datasets, two important sources of uncertainty

include (Prein and Gobiet 2017) 1) the stochastic

sampling error due to a sparse network density and

2) the systematic measuring error due to wind-induced

undercatch.

To bridge the scale gap between point measurements

made at stations and the areal averages from model

predictions or satellite measurements, station observa-

tions are gridded to the resolution of the model or sat-

ellite grid. The representativeness of the station-based

dataset is largely determined by the spatial sampling,

that is, density of the network, especially when the

decorrelation length of precipitation is shorter than the

mean station distance. For precipitation decorrelation

lengths depend on the spatial structure of rainfall pat-

terns, which vary depending on season and region. Thus,

convective precipitation has typically shorter decorrelation

lengths than stratiform precipitation. Spatial decorrelation

lengths generally increase with accumulation intervals

(Hatfield et al. 1999) and decrease with increasing in-

tensity (Booij 2002). Osborn and Hulme (1997) found

decorrelation lengths for European daily precipitation

of about 200 km in summer and 300 km in winter. Ide-

ally, the average station distance should be smaller than

the decorrelation length; thus, a minimum of one station

per 0.258 grid box for the reference dataset (see also

requirement by Haylock et al. 2008) should suffice in

general. But at certain regions representativeness may

be challenged, for example, in mountainous regions like

the Alps, where decorrelation lengths tend to be much

shorter, and in less highly sampled regions (e.g.,

Romania).

The uncertainty due to wind-induced undercatch de-

pends on instrument characteristics (size, shape, expo-

sition of the gauge, etc.), the type of precipitation, and

meteorological conditions (wind, precipitation type, air

temperature, humidity, radiation) during the precipita-

tion event. Correction methods exit, but differ between

countries. As the required information is often not

available, undercatch correction is especially challeng-

ing for continental-scale and global datasets (Schneider

et al. 2014). Therefore, bulk correction factors for

monthly climatological conditions are often applied to

global datasets such as GPCP, PERSIANN-CDR, and

GPCC (Legates andWillmott 1990). The error is large in
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snow regions and cold seasons. Hence, under these

conditions, the difference found for the various candi-

date datasets can partly be attributed to uncertainty

within the reference dataset.

b. Uncertainties in the candidate datasets and
their comparability

When comparing different types of datasets (e.g.,

in situ, model-based, and satellite-based), their struc-

tural differences caused by the origin of the estimates

must be considered. The quantity actually measured, its

uncertainty, its sampling, and its relation to precipitation

all have an influence on the resulting precipitation esti-

mate. While the gauge-based datasets (E-OBS and

ECMWF) are based on point-based direct measure-

ments of accumulated daily precipitation at the surface,

the other datasets used here contain precipitation esti-

mates either based on observations only somehow re-

lated to surface precipitation as in case of satellites or on

models, where precipitation is the outcome of a chain of

simulated processes.

Satellite-based products build upon the assumption

that precipitation is associated with cold cloud tops

(IR-based techniques, such as PERSIANN) or with

microphysical properties of frozen hydrometeors in the

upper portion of the cloud (PMW scattering-based re-

trievals over land used within TMPA and CMORPH;

Petty 1995). Due to these assumptions both retrievals

work best for convective rainfall as found in the tropics

and subtropics and during the warm season over mid-

latitude continental areas. Consequently, precipitation

during midlatitude winter and in maritime-influenced

regimes, which is mainly of stratiform character, is often

missed or estimated with large uncertainties, which

might explain the observed underestimation of pre-

cipitation in winter and over northwestern Europe.

For the PMW-based products, the large biases in

winter are due to retrieval deficiencies for low in-

tensities and over cold/frozen surfaces (Petty 1995).

For the IR-based products the false interpretation of

high-level but nonprecipitation clouds leads to an

overestimation of precipitation frequency as depicted

by PERSIANN. As both precipitation ‘‘proxies’’—

cloud-top height and upper-air ice particles—are only

rather loosely coupled to surface rainfall intensity, the

relationships may depend on the precipitation regime

and thus vary from season to season and from region

to region. The resulting precipitation estimates are

therefore also affected by the specifics of the regions

used for calibrating the retrieval algorithms (Petty

1995; Smith et al. 1992).

The reanalysis products evaluated here also pro-

vide only indirect estimates of precipitation, as none

of them assimilates observed precipitation. The resulting

precipitation fields are therefore based on the repre-

sentation of its generating processes in the model and on

the quality of the initial state achieved by the assimila-

tion of, for example, winds, moisture, and temperature.

Increasing horizontal and vertical resolution proved to

provide better results due to a more realistic represen-

tation of the topography as well as the physical and

dynamical processes (Kendon et al. 2012; Knist et al.

2019; Rauscher et al. 2010; Zeng et al. 2016).

On top of uncertainties related to the estimation

method, sampling affects the quality of the datasets. As

both satellite and model products come as areal average

(in place of a point estimate), here only temporal sam-

pling determines the uncertainty. For reanalyses, esti-

mates are already provided as accumulations over time

(e.g., over 6 h) and are thus comparable to accumulated

precipitation measured by the gauges. Satellite-based

estimates only provide snapshots at certain times dic-

tated by satellite orbit and instrument characteristics.

Depending on the orbit type the number of snapshots

varies between 15min (GEO) and twice daily (LEO) for

individual sensors.Multisensor products (such as TMPA

and CMORPH) often come with a 3-hourly resolution,

thus daily values are always based on a limited number

of snapshots.

c. Independence of the datasets

Dependencies between datasets have to be taken into

account for any comparison or evaluation exercise. Al-

though the number of stations used in the reference and

in the E-OBS datasets differs considerably they cannot

be considered independent because of the overlap of

stations. Thus, it does not come as a surprise that E-OBS

closely agrees with the reference, has only small biases

(within 10%), and exhibits the largest skill with the re-

spect to the detection of extreme events.

The other datasets, both the regional reanalysis

datasets and the satellite-based datasets do not use

any in situ precipitation measurements, except for

PERSIANN which is calibrated to the GPCP monthly

2.58 gridded dataset, which merges satellite and in situ

observations. Thus, overland gauges in particular have a

considerable impact on its precipitation estimate. The

impact is, however, limited to monthly or coarser time

scales; accordingly, precipitation characteristics based

on daily estimates (such as INT, NWET) are only indi-

rectly influenced by the gauge information.

The three satellite-based products used in our evalu-

ation are also not completely independent since they

share common observations through the use of PMW

and IR data, albeit in very different ways. For example,

CMORPH uses the IR data only for deriving motion
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vectors and not for precipitation estimation as in TMPA,

and PERSIANN only uses IR data. Consequently, al-

though the two PMW-based datasets (CMORPH and

TMPA) show generally very similar regional bias pat-

terns for NWET, INT patterns differ considerable (ex-

cept for the summer season) with the largest differences

in winter when CMORPH largely underestimates INT,

whereas TMPA tends to overestimate.

While both regional reanalyses evaluated here use the

ERA-Interim reanalysis as lateral boundary conditions,

they differ with respect to their spatial resolution, as-

similation scheme (3D-Var versus nudging), dynamical

model core type (hydrostatic versus nonhydrostatic),

and parameterization schemes. Accordingly, their pre-

cipitation fields may differ considerably. While in sum-

mer the spatial bias patterns for INT and the frequency

distributions at high intensities are fairly similar, the bias

pattern for NWET and the low intensities of the fre-

quency distribution were found to differ considerably.

HIRLAM exhibits the commonly known feature of

weather and climate models of showing too frequent

precipitation (see, e.g., Trenberth et al. 2003; Sun et al.

2006) with respective biases of 40% and 27% for sum-

mer and winter. The overestimation of low intensities,

another typicalmodel feature, is only visible forHIRLAM

in summer, not for HERZ.

6. Summary and conclusions

We have evaluated several widely used delayed-mode

precipitation datasets with high temporal and spatial

resolution with respect to their ability to represent

precipitation characteristics and extremes over western

and central Europe. Three years (2007–09) of gridded

station-based precipitation fields provided by ECMWF

were used as reference because of its uniquely dense

gauge network. The candidate datasets encompassed

one in situ dataset (E-OBS), twomodel-based regional

reanalyses (HERZ, HIRLAM), and three satellite-

based datasets (PERSIANN, TMPA, CMORPH).

First, we assessed the ability of the candidate datasets to

replicate spatial precipitation patterns and frequency

distributions of intensities and WS durations. Then, we

determined their skill of precipitation event detection

with a focus on extremes, using temporally and spatially

matched pairs of precipitation estimates. The results il-

lustrate the general utility of the evaluated datasets,

especially during summer months over the region. Their

utility may, however, be limited with respect to the

representation of certain precipitation quantiles (e.g.,

E-OBS for high quantiles), during certain seasons

(winter for TMPA, CMORPH), over dry regions (es-

pecially PERSIANN, HIRLAM), over coastal areas

(TMPA, CMORPH), and for certain precipitation

regimes (ocean-influenced weather types for TMPA,

CMORPH). None of the non-station-based datasets

showed skill for the detection of extreme precipitation

events at the highest temporal and spatial scales (1 day,

0.258). But for periods of and longer than 3 days and

areas of and larger than 1.258 grid size, the products

exhibit considerable skill over large parts of the domain.

Both the reanalysis and satellite-based products also

revealed added value compared to coarser-resolution

global benchmark datasets.

The results illustrate that there is not one single best

data product. Each of them is prone to specific time and

space varying uncertainties. E-OBS as another ground-

based dataset compared best with the reference for ob-

vious reasons and is therefore, as expected, often in

closest agreement to the reference. But the results for

E-OBS also highlight the importance of station density

as a source for uncertainty. The satellite-based pre-

cipitation datasets have the greatest difficulties in rep-

resenting precipitation frequency caused by uncertainties

in the rain/no rain detection and due to approximations

and assumptions in the retrieval. The former leads to false

alarm overestimation of nonprecipitation high clouds,

most prominently seen for PERSIANN, to warm rain

being missed, and to difficulties over cold/frozen/snow

surfaces. The regional reanalysis datasets—although not

constrained by precipitation observations—are well

able to represent the precipitation characteristics. Re-

markably, their performances were still found to differ

considerably due to differences, for example, in the

spatial resolution, which influences the detail of the to-

pography used and impacts the processes resolved by

the model. The regional reanalysis HERZ, which uses a

nonhydrostatic model with comparatively high spatial

resolution (6 km), is able to overcome known models’

problems of showing too frequent too low precipitation

as observed for HIRLAM.

To provide guidance on where products are more or

less accurate, estimates of the associated uncertainties

should be incorporated in the product generation and

provided with the datasets. In most cases such uncer-

tainty estimates are not available yet. This information

will help users to decide about the fit for purpose for

their individual application. The availability of such

uncertainty estimates would not only ease the use for

specific applications (in for example hydrology or the

detection of trends and patterns of change) but would

also help to better compare different data products.

Ensembles represent a promising tool to quantify

uncertainty. They are increasingly used in the modeling

community to quantify uncertainties for weather and

climate predictions. In the meantime, also probabilistic
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reanalyses become available both on global (e.g., ERA-5)

and on regional scales, for example, the COSMO-REA12

(Bach et al. 2016), a 3D-Var ensemble reanalysis from the

U.K. Met Office, and the MESCAN-SURFEX surface

reanalysis, all of them produced within the EU-funded

Uncertainties in Ensembles of Regional ReAnalyses

(UERRA) project. Ensemble approaches are also al-

ready tested for quantification of in situ data products.

For example, a new E-OBS ensemble dataset is under

development providing a useful uncertainty estimate by

producing an ensemble of grids using conditional sto-

chastic simulations. Ensembles as means of uncertainty

estimate may also be an option for satellite-based prod-

ucts as suggested by Povey and Grainger (2015).

As the fuzzy methodology has proven to be better

suited (compared to deterministic methods) for com-

parisons involving such a highly variable parameter as

precipitation, especially when it comes to extremes, it

would be of particular interest to extend its application

both for the space (toward global) and for the time scale

(toward higher resolution). This would allow one to

get a more complete picture on the useful scales of the

global products (in different regions) and to judge the

reliability of products (especially models) in represent-

ing fluctuations at subdaily time scales, which form the

dominant component for the variance of precipitation

around the world (Covey et al. 2018).

Acknowledgments. We acknowledge the use of the

E-OBS data set provided by the EU-FP6 project

ENSEMBLES (http://ensembles-eu.metoffice.com), and

the data providers in the ECA&D project (http://

eca.knmi.nl). The GPCP1DD and TMPA3B42RT data

were provided by the NASA/Goddard Space Flight

Center’s (GSFC) Mesoscale Atmospheric Processes

Laboratory and assessed at ftp://meso.gsfc.nasa.gov/pub/

1dd-v1.2/ and ftp://trmmopen.gsfc.nasa.gov/pub/merged/

3B42RT/, respectively. We also acknowledge the use of

the PERSIANN CDR developed within NOAA’s CDR

Program, which was acquired from NOAA’s National

Centers for Environmental Information at https://

www.ncei.noaa.gov/data/precipitation-persiann/access/.

CMORPHVersion 1 was provided byNOAA’s Climate

Prediction Center (CPC) and downloaded via ftp from

ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/.

ERA-Interim total precipitation fields were acquired from

the ERA-Interim Data Server at http://apps.ecmwf.int/

datasets/data/interim-full-daily/levtype5sfc/. We are grate-

ful to Tomas Landelius and Per Undén (Swedish Me-

teorological and Hydrological Service, HIRLAM) and

Christoph Bollmeyer (formerly at University of Bonn,

HERZ) for providing the datasets and to Anna Ghelli

(ECMWF) for helping with assessing the high density

station data (denoted ECMWF within this study). Olga

Zolina benefited from the support by CNRS IGE

and UGA and by Helmholtz-RSF Grant 18-47-06202.

Software used within this study partly builds upon

pieces of code provided by Elisabeth Ebert (https://

www.cawcr.gov.au/projects/verification/#Tools_packages).

REFERENCES

Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M. Goodman,

2001: Intercomparison of global precipitation products: The

third Precipitation Intercomparison Project (PIP-3). Bull.

Amer. Meteor. Soc., 82, 1377–1396, https://doi.org/10.1175/

1520-0477(2001)082,1377:IOGPPT.2.3.CO;2.

——, and Coauthors, 2003: The version 2 Global Precipitation

Climatology Project (GPCP) monthly precipitation analysis

(1979–present). J. Hydrometeor., 4, 1147–1167, https://doi.org/

10.1175/1525-7541(2003)004,1147:TVGPCP.2.0.CO;2.

AghaKouchak, A., A. Behrangi, S. Sorooshian, K. Hsu, and

E. Amitai, 2011: Evaluation of satellite-retrieved extreme pre-

cipitation rates across the central United States. J. Geophys.

Res., 116, D02115, https://doi.org/10.1029/2010JD014741.

Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the

amplification of precipitation extremes. Science, 321, 1481–

1484, https://doi.org/10.1126/science.1160787.

Ashouri, H., and Coauthors, 2015: PERSIANN-CDR daily pre-

cipitation climate data record from multisatellite observa-

tions for hydrological and climate studies. Bull. Amer.

Meteor. Soc., 96, 69–84, https://doi.org/10.1175/BAMS-D-13-

00068.1.

Bach, L., C. Schraff, J. D. Keller, and A. Hense, 2016: Towards a

probabilistic regional reanalysis system for Europe: evaluation

of precipitation from experiments. Tellus, 68A, 32209, https://

doi.org/10.3402/tellusa.v68.32209.

Bollmeyer, C., and Coauthors, 2015: Towards a high-resolution re-

gional reanalysis for the European CORDEX domain. Quart.

J. Roy. Meteor. Soc., 141, 1–15, https://doi.org/10.1002/qj.2486.
Booij, M. J., 2002: Modelling the effects of spatial and temporal

resolution of rainfall and basin model on extreme river dis-

charge. Hydrol. Sci. J., 47, 307–320, https://doi.org/10.1080/

02626660209492932.

Brdar, S., M. Baldauf, A. Dedner, and R. Klöfkorn, 2013: Com-

parison of dynamical cores for NWP models: Comparison of

COSMO and Dune. Theor. Comput. Fluid Dyn., 27, 453–472,

https://doi.org/10.1007/s00162-012-0264-z.

Brienen, S., A. Kapala, H. Machel, and C. Simmer, 2013: Regional

centennial precipitation variability over Germany from ex-

tended observation records. Int. J. Climatol., 33, 2167–2184,
https://doi.org/10.1002/joc.3581.

Collins, M., and Coauthors, 2013: Long-term climate change:

Projections, commitments and irreversibility. Climate Change

2013: The Physical Science Basis, T. F. Stocker et al., Eds.,

Cambridge University Press, 1029–1136.

——, and Coauthors, 2018: Challenges and opportunities for

improved understanding of regional climate dynamics. Nat.

Climate Change, 8, 101–108, https://doi.org/10.1038/s41558-
017-0059-8.

Covey, C., C. Doutriaux, P. J. Gleckler, K. E. Taylor, K. E.

Trenberth, and Y. Zhang, 2018: High-frequency intermit-

tency in observed and model-simulated precipitation.

Geophys. Res. Lett., 45, 12 514–12 522, https://doi.org/

10.1029/2018GL078926.

JUNE 2019 LOCKHOFF ET AL . 1143

Unauthenticated | Downloaded 11/10/22 12:03 PM UTC

http://ensembles-eu.metoffice.com
http://eca.knmi.nl
http://eca.knmi.nl
ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2/
ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2/
ftp://trmmopen.gsfc.nasa.gov/pub/merged/3B42RT/
ftp://trmmopen.gsfc.nasa.gov/pub/merged/3B42RT/
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://www.cawcr.gov.au/projects/verification/#Tools_packages
https://www.cawcr.gov.au/projects/verification/#Tools_packages
https://doi.org/10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2
https://doi.org/10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2
https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
https://doi.org/10.1029/2010JD014741
https://doi.org/10.1126/science.1160787
https://doi.org/10.1175/BAMS-D-13-00068.1
https://doi.org/10.1175/BAMS-D-13-00068.1
https://doi.org/10.3402/tellusa.v68.32209
https://doi.org/10.3402/tellusa.v68.32209
https://doi.org/10.1002/qj.2486
https://doi.org/10.1080/02626660209492932
https://doi.org/10.1080/02626660209492932
https://doi.org/10.1007/s00162-012-0264-z
https://doi.org/10.1002/joc.3581
https://doi.org/10.1038/s41558-017-0059-8
https://doi.org/10.1038/s41558-017-0059-8
https://doi.org/10.1029/2018GL078926
https://doi.org/10.1029/2018GL078926


Dahlgren, P., and N. Gustafsson, 2012: Assimilating host model

information into a limited area model. Tellus, 64A, 15 836,

https://doi.org/10.3402/tellusa.v64i0.15836.

——, T. Landelius, P. Kållberg, and S. Gollvik, 2016: A high-

resolution regional reanalysis for Europe. Part 1: Three-

dimensional reanalysis with the regional High-Resolution

Limited-Area Model (HIRLAM). Quart. J. Roy. Meteor.

Soc., 142, 2119–2131, https://doi.org/10.1002/qj.2807.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis:

Configuration and performance of the data assimilation sys-

tem.Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/

10.1002/qj.828.

Ebert, E. E., 2008: Fuzzy verification of high-resolution gridded

forecasts: a review and proposed framework. Meteor. Appl.,

15, 51–64, https://doi.org/10.1002/met.25.

——, J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-

time precipitation estimates from satellite observations and

numerical models.Bull. Amer. Meteor. Soc., 88, 47–64, https://

doi.org/10.1175/BAMS-88-1-47.

Gehne, M., T. M. Hamill, G. N. Kiladis, and K. E. Trenberth, 2016:

Comparison of global precipitation estimates across a range of

temporal and spatial scales. J. Climate, 29, 7773–7795, https://

doi.org/10.1175/JCLI-D-15-0618.1.

Ghelli, A., and F. Lalaurette, 2000: Verifying precipitation fore-

casts using upscaled observations. ECMWF Newsletter, No.

87, ECMWF, Reading, United Kingdom, 9–17.

Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate

information needs at the regional level: The CORDEX

framework. WMO Bull., 58, 175–183.

Groisman, P. Y., R. W. Knight, D. R. Easterling, T. R. Karl, G. C.

Hegerl, and V. A. N. Razuvaev, 2005: Trends in intense pre-

cipitation in the climate record. J. Climate, 18, 1326–1350, https://

doi.org/10.1175/JCLI3339.1.

Haiden, T., M. J. Rodwell, D. S. Richardson, A. Okagaki,

T. Robinson, and T. Hewson, 2012: Intercomparison of global

model precipitation forecast skill in 2010/11 using the SEEPS

score.Mon.Wea. Rev., 140, 2720–2733, https://doi.org/10.1175/

MWR-D-11-00301.1.

Hatfield, J. L., J. H. Prueger, and D. W. Meek, 1999: Spatial

variation of rainfall over a large watershed in central Iowa.

Theor. Appl. Climatol., 64, 49–60, https://doi.org/10.1007/

s007040050110.

Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D.

Jones, and M. New, 2008: A European daily high-resolution

gridded data set of surface temperature and precipitation for

1950-2006. J. Geophys. Res., 113, D20119, https://doi.org/

10.1029/2008JD010201.

Hofstra, N., M. New, and C. McSweeney, 2010: The influence of

interpolation and station network density on the distributions

and trends of climate variables in gridded daily data. Climate

Dyn., 35, 841–858, https://doi.org/10.1007/s00382-009-0698-1.

Huffman, G. J., and Coauthors, 2001: Global precipitation at one-

degree daily resolution from multisatellite observations.

J. Hydrometeor., 2, 36–50, https://doi.org/10.1175/1525-

7541(2001)002,0036:GPAODD.2.0.CO;2.

——, and Coauthors, 2007: The TRMMmultisatellite precipitation

analysis (TMPA): Quasi-global, multiyear, combined-sensor

precipitation estimates at fine scales. J. Hydrometeor., 8, 38–

55, https://doi.org/10.1175/JHM560.1.

Isotta, F. A., R. Vogel, and C. Frei, 2015: Evaluation of European

regional reanalysis and downscalings for precipitation in the

Alpine region. Meteor. Z., 24, 15–37, https://doi.org/10.1127/

metz/2014/0584.

Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004:

CMORPH: A method that produces global precipitation es-

timates from passive microwave and infrared data at high

spatial and temporal resolution. J. Hydrometeor., 5, 487–503,

https://doi.org/10.1175/1525-7541(2004)005,0487:CAMTPG.
2.0.CO;2.

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo,

M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II

Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643,

https://doi.org/10.1175/BAMS-83-11-1631.

Kendon, E. J., N. M. Roberts, C. A. Senior, and M. J. Roberts,

2012: Realism of rainfall in a very high-resolution regional

climate model. J. Climate, 25, 5791–5806, https://doi.org/

10.1175/JCLI-D-11-00562.1.

Kidd, C., 2001: Satellite rainfall climatology: A review. Int.

J. Climatol., 21, 1041–1066, https://doi.org/10.1002/joc.635.

——, and V. Levizzani, 2011: Status of satellite precipitation re-

trievals.Hydrol. Earth Syst. Sci., 15, 1109–1116, https://doi.org/

10.5194/hess-15-1109-2011.

——, P. Bauer, J. Turk, G. J. Huffman, R. Joyce, K. L. Hsu, and

D. Braithwaite, 2012: Intercomparison of high-resolution pre-

cipitation products over northwest Europe. J.Hydrometeor., 13,

67–83, https://doi.org/10.1175/JHM-D-11-042.1.

Klein Tank, A. M. G., and G. P. Können, 2003: Trends in indices of

daily temperature and precipitation extremes in Europe,

1946–99. J. Climate, 16, 3665–3680, https://doi.org/10.1175/

1520-0442(2003)016,3665:TIIODT.2.0.CO;2.

Knist, S., K. Goergen, and C. Simmer, 2019: Evaluation and

projected changes of precipitation statistics in convection-

permitting WRF climate simulations over Central Europe. Cli-

mate Dyn., https://doi.org/10.1007/s00382-018-4147-x, in press.

Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006:

World map of the Koppen-Geiger climate classification up-

dated. Meteor. Z., 15, 259–263, https://doi.org/10.1127/0941-

2948/2006/0130.

Legates, D. R and C. J. Willmott, 1990: Mean seasonal and spatial

variability in gauge-corrected, global precipitation. Int. J. Clima-

tol., 10, 111–127, https://doi.org/10.1002/joc.3370100202.

Lockhoff, M., O. Zolina, C. Simmer, and J. Schulz, 2014: Evalua-

tion of Satellite-retrieved extreme precipitation over Europe

using gauge observations. J. Climate, 27, 607–623, https://

doi.org/10.1175/JCLI-D-13-00194.1.

Osborn, T. J., and M. Hulme, 1997: Development of a relationship

between station and grid-box rainday frequencies for climate

model evaluation. J. Climate, 10, 1885–1908, https://doi.org/

10.1175/1520-0442(1997)010,1885:DOARBS.2.0.CO;2.

Petty, G. W., 1995: The status of satellite-based rainfall estimation

over land. Remote Sens. Environ., 51, 125–137, https://doi.org/

10.1016/0034-4257(94)00070-4.

Povey, A. C., and R. G. Grainger, 2015: Known and unknown

unknowns: uncertainty estimation in satellite remote sensing.

Atmos. Meas. Tech., 8, 4699–4718, https://doi.org/10.5194/

amt-8-4699-2015.

Prein, A. F., and A. Gobiet, 2017: Impacts of uncertainties in

European gridded precipitation observations on regional cli-

mate analysis. Int. J. Climatol., 37, 305–327, https://doi.org/

10.1002/joc.4706.

Rauscher, S. A., E. Coppola, C. Piani, and F. Giorgi, 2010: Reso-

lution effects on regional climate model simulations of sea-

sonal precipitation over Europe. Climate Dyn., 35, 685–711,

https://doi.org/10.1007/s00382-009-0607-7.

Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification

of rainfall accumulations from high-resolution forecasts of

1144 JOURNAL OF HYDROMETEOROLOGY VOLUME 20

Unauthenticated | Downloaded 11/10/22 12:03 PM UTC

https://doi.org/10.3402/tellusa.v64i0.15836
https://doi.org/10.1002/qj.2807
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/met.25
https://doi.org/10.1175/BAMS-88-1-47
https://doi.org/10.1175/BAMS-88-1-47
https://doi.org/10.1175/JCLI-D-15-0618.1
https://doi.org/10.1175/JCLI-D-15-0618.1
https://doi.org/10.1175/JCLI3339.1
https://doi.org/10.1175/JCLI3339.1
https://doi.org/10.1175/MWR-D-11-00301.1
https://doi.org/10.1175/MWR-D-11-00301.1
https://doi.org/10.1007/s007040050110
https://doi.org/10.1007/s007040050110
https://doi.org/10.1029/2008JD010201
https://doi.org/10.1029/2008JD010201
https://doi.org/10.1007/s00382-009-0698-1
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
https://doi.org/10.1175/JHM560.1
https://doi.org/10.1127/metz/2014/0584
https://doi.org/10.1127/metz/2014/0584
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1175/BAMS-83-11-1631
https://doi.org/10.1175/JCLI-D-11-00562.1
https://doi.org/10.1175/JCLI-D-11-00562.1
https://doi.org/10.1002/joc.635
https://doi.org/10.5194/hess-15-1109-2011
https://doi.org/10.5194/hess-15-1109-2011
https://doi.org/10.1175/JHM-D-11-042.1
https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2
https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2
https://doi.org/10.1007/s00382-018-4147-x
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1002/joc.3370100202
https://doi.org/10.1175/JCLI-D-13-00194.1
https://doi.org/10.1175/JCLI-D-13-00194.1
https://doi.org/10.1175/1520-0442(1997)010<1885:DOARBS>2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010<1885:DOARBS>2.0.CO;2
https://doi.org/10.1016/0034-4257(94)00070-4
https://doi.org/10.1016/0034-4257(94)00070-4
https://doi.org/10.5194/amt-8-4699-2015
https://doi.org/10.5194/amt-8-4699-2015
https://doi.org/10.1002/joc.4706
https://doi.org/10.1002/joc.4706
https://doi.org/10.1007/s00382-009-0607-7


convective events.Mon.Wea. Rev., 136, 78–97, https://doi.org/

10.1175/2007MWR2123.1.

Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and

validation of high-resolution satellite precipitation estimates

with 3-hourly gauge data. J. Hydrometeor., 10, 149–166,

https://doi.org/10.1175/2008JHM1052.1.

Schneider, U., A. Becker, P. Finger, A.Meyer-Christoffer, M. Ziese,

and B. Rudolf, 2014: GPCC’s new land surface precipitation

climatology based on quality-controlled in situ data and its role

in quantifying the global water cycle. Theor. Appl. Clima-

tol., 115, 15–40, https://doi.org/10.1007/s00704-013-0860-x.

Seneviratne, S. I., and Coauthors, 2012: Changes in climate ex-

tremes and their impacts on the natural physical environment.

Managing the Risks of Extreme Events and Disasters to Ad-

vance Climate Change Adaptation, C. B. Field et al., Eds.,

Cambridge University Press, 109–230.

Simmer, C., and Coauthors, 2016: HErZ: The German Hans-Ertel

Centre for Weather Research. Bull. Amer. Meteor. Soc., 97,

1057–1068, https://doi.org/10.1175/BAMS-D-13-00227.1.

Smith, E. A., A. Mugnai, H. J. Cooper, G. J. Tripoli, and X. Xiang,

1992: Foundations for statistical-physical precipitation re-

trieval from passive microwave satellite measurements. Part I:

Brightness-temperature properties of a time-dependent cloud-

radiation model. J. Appl. Meteor., 31, 506–531, https://doi.org/

10.1175/1520-0450(1992)031,0506:FFSPPR.2.0.CO;2.

Stampoulis, D., and E. N. Anagnostou, 2012: Evaluation of global

satellite rainfall products over continental Europe. J. Hydrome-

teor., 13, 588–603, https://doi.org/10.1175/JHM-D-11-086.1.

Steppeler, J., G. Doms, U. Schättler, H. Bitzer, A. Gassmann,

U. Damrath, and G. Gregoric, 2003: Mesogamma scale fore-

casts using the nonhydrostatic model LM. Meteor. Atmos.

Phys., 82, 75–96, https://doi.org/10.1007/s00703-001-0592-9.

Sun, Y., S. Solomon, A. Dai, and R.W. Portmann, 2006: How often

does it rain? J. Climate, 19, 916–934, https://doi.org/10.1175/
JCLI3672.1.

Trenberth, K. E., A. Dai, R.M. Rasmussen, andD. B. Parsons, 2003:

The changing character of precipitation. Bull. Amer. Meteor.

Soc., 84, 1205–1217, https://doi.org/10.1175/BAMS-84-9-1205.

——, Y. Zhang, and M. Gehne, 2017: Intermittency in pre-

cipitation: Duration, frequency, intensity, and amounts using

hourly data. J. Hydrometeor., 18, 1393–1412, https://doi.org/
10.1175/JHM-D-16-0263.1.

Turk, F. J., P. Arkin, E. E. Ebert, and M. R. P. Sapiano, 2008:

Evaluating high-resolution precipitation products. Bull.

Amer. Meteor. Soc., 89, 1911–1916, https://doi.org/10.1175/

2008BAMS2652.1.

Wahl, S., C. Bollmeyer, S. Crewell, C. Figura, P. Friederichs,

A.Hense, J. Keller, andC.Ohlwein, 2017:A novel convective-

scale regional reanalysis COSMO-REA2: Improving the

representation of precipitation. Meteor. Z., 26, https://

doi.org/10.1127/metz/2017/0824.

Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences.

2nd ed. International Geophysics Series, Vol. 100, Academic

Press, 648 pp.

Zeng, X.-M., M. Wang, Y. Zhang, Y. Wang, and Y. Zheng, 2016:

Assessing the effects of spatial resolution on regional climate

model simulated summer temperature and precipitation in

China: A case study. Adv. Meteor., 2016, https://doi.org/

10.1155/2016/7639567.

Zolina, O., A. Kapala, C. Simmer, and S. K. Gulev, 2004: Analysis

of extreme precipitation over Europe from different re-

analysis: A comparative assessment. Global Planet. Change,

44, 129–161, https://doi.org/10.1016/j.gloplacha.2004.06.009.

——, C. Simmer, A. Kapala, and S. K. Gulev, 2005: On the ro-

bustness of the estimates of centennial-scale variability in

heavy precipitation from station data over Europe. Geophys.

Res. Lett., 32, L14707, https://doi.org/10.1029/2005GL023231.

——, ——, K. Belyaev, A. Kapala, and S. Gulev, 2009: Improving

estimates of heavy and extreme precipitation using daily re-

cords from European rain gauges. J. Hydrometeor., 10, 701–

716, https://doi.org/10.1175/2008JHM1055.1.

——, ——, S. K. Gulev, and S. Kollet, 2010: Changing structure of

European precipitation: Longer wet periods leading to more

abundant rainfalls. Geophys. Res. Lett., 37, L06704, https://

doi.org/10.1029/2010GL042468.

——, ——, K. P. Belyaev, S. K. Gulev, and K. P. Koltermann,

2013: Changes in European wet and dry spells over the last

decades. J. Climate, 26, 2022–2047, https://doi.org/10.1175/

JCLI-D-11-00498.1.

——, ——, A. Kapala, P. Shabanov, P. Becker, H. Mächel,
S. Gulev, and P. Groisman, 2014: Precipitation variability and

extremes in central Europe: New view from STAMMEX re-

sults. Bull. Amer. Meteor. Soc., 95, 995–1002, https://doi.org/
10.1175/BAMS-D-12-00134.1.

JUNE 2019 LOCKHOFF ET AL . 1145

Unauthenticated | Downloaded 11/10/22 12:03 PM UTC

https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1175/2008JHM1052.1
https://doi.org/10.1007/s00704-013-0860-x
https://doi.org/10.1175/BAMS-D-13-00227.1
https://doi.org/10.1175/1520-0450(1992)031<0506:FFSPPR>2.0.CO;2
https://doi.org/10.1175/1520-0450(1992)031<0506:FFSPPR>2.0.CO;2
https://doi.org/10.1175/JHM-D-11-086.1
https://doi.org/10.1007/s00703-001-0592-9
https://doi.org/10.1175/JCLI3672.1
https://doi.org/10.1175/JCLI3672.1
https://doi.org/10.1175/BAMS-84-9-1205
https://doi.org/10.1175/JHM-D-16-0263.1
https://doi.org/10.1175/JHM-D-16-0263.1
https://doi.org/10.1175/2008BAMS2652.1
https://doi.org/10.1175/2008BAMS2652.1
https://doi.org/10.1127/metz/2017/0824
https://doi.org/10.1127/metz/2017/0824
https://doi.org/10.1155/2016/7639567
https://doi.org/10.1155/2016/7639567
https://doi.org/10.1016/j.gloplacha.2004.06.009
https://doi.org/10.1029/2005GL023231
https://doi.org/10.1175/2008JHM1055.1
https://doi.org/10.1029/2010GL042468
https://doi.org/10.1029/2010GL042468
https://doi.org/10.1175/JCLI-D-11-00498.1
https://doi.org/10.1175/JCLI-D-11-00498.1
https://doi.org/10.1175/BAMS-D-12-00134.1
https://doi.org/10.1175/BAMS-D-12-00134.1

