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Abstract—Marine radars are vital for safe navigation at sea, detecting vessels and obstacles. Sea clutter,
caused by Bragg scattering, is usually filtered out as noise. It becomes detectable in unfiltered radar
images, acquired using SeaVision hardware package, when wind speed and wave height exceed certain
thresholds. The parameters of wind-induced ocean waves can be determined using these images; however,
traditional spectral methods for obtaining wave characteristics face limitations in improving accuracy. Deep
learning techniques offer advantages in image processing tasks, being more robust and able to handle
noisier data, yet delivering the results without Fourier transformations and not necessarily requiring long
series of radar imagery. In our study, we present the method exploiting convolutional neural networks
(CNNs) for estimating wave characteristics from shipborne radar data captured using SeaVision package.
In particular, we train our CNN to infer significant wave height using estimates provided by the Spotter
buoy as ground truth. Our CNN-based method has an advantage over the classical methods due to the low
requirements for radar image data since we process just one SeaVision snapshot, whereas classical method
requires more than 20 min of radar images.

Keywords: SeaVision, shipborne X-band radar, navigation radar, significant wave height, deep learning,
convolutional neural networks, spatial positional encoding, ResNet, machine learning

DOI: 10.3103/S0027134923070159

1. INTRODUCTION
The utilization of marine X-band radars for ship

navigation and safety is well-established. However,
there is also a significant amount of secondary data
that may be extracted from radar digitized images of
the sea clutter. In Shirshov Institute of Oceanology
of the Russian Academy of Sciences along with
Marine Complex Systems Ltd., a hardware package
is developed for capturing raw navigation radar data,
namely SeaVision (see Fig. 1). In this study, we
explore the use of radar images to extract important
information about ocean waves, significant wave
height (SWH) in particular. The traditional approach
for estimating ocean wave parameters using a se-
ries of sea clutter images implies three-dimensional
Fourier analysis employed to separate signal from
background noise. In order to achieve this result, cal-
ibration coefficients, attributed specifically to certain

*E-mail: krinitsky@sail.msk.ru

radar models, are used for further determination of
ocean wave characteristics; yet, a sequence of radar
images of length exceeding 20 min is required for the
classical method to deliver SWH estimates. Several
commercial and scientific solutions have already
implemented these methods for real-time monitor-
ing of wind waves: WaMoS II [1], MIROS [2],
SeaDarQ [3], WaveFinder [4], Helmholtz-Zentrum
Hereon coherent-on-receive radar [5], and
SeaVision [6] (see Fig. 1).

Machine learning techniques have also demon-
strated capabilities for the estimation of ocean wave
parameters from radar images of the ocean surface.
In contrast with the traditional physical-based ap-
proach, machine learning potentially makes it possi-
ble to overcome the requirements of calibration coef-
ficients, modulation transfer functions and log series
of radar images. Recent studies have demonstrated a
slightly higher accuracy of artificial neural networks
in determining SWH when compared with the tra-
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Fig. 1. SeaVision: a hardware package for capturing raw unprocessed radar signal presenting it as individual images
representing sea clutter.

ditional Fourier-based approach [7]. Currently, the
main limitation in the usage of the neural networks
is the requirement for large training subset which
should be collected in a wide variety of wave condi-
tions.

As the machine learning (ML) techniques were
developing, various models demonstrated their ef-
ficiency in radar image processing for estimating
ocean waves’ characteristics [8–12]. In contrast
with abovementioned classical ML models, in recent
studies, an approach has been presented of exploiting
artificial neural networks in the problem of SWH
estimating using radar imagery. In particular, in
[7, 8], the authors demonstrated the capabilities
of multilayer perceptron (MLP) in estimating wind
waves’ characteristics on the basis of the data from
radars mounted on oil platforms.

The efficacy of convolutional neural networks
(CNNs) for pattern recognition in digital imagery has
been demonstrated in various applications, including
Earth Sciences [13–16]. There are a number of
studies demonstrating successful applications of
CNNs in estimating wave parameters from marine
navigation radar imagery or other types of remote
sensing data. For instance, in [17], a CNNs was
exploited to estimate real-time SWH based on a
series of actual ocean photo images. In [18], a method
was presented for processing Sentinel-1 synthetic
aperture radar (SAR) images, while in [19], synthetic
radar images were used. Hybrid models have also
been developed in several recent studies [20–22].
These hybrid models outperform standalone neural
networks and classical spectral methods.

In this paper, we present one more algorithm
based on machine learning techniques for estimating

SWH from marine shipborne X-band navigation
radar equipped with SeaVision capturing package.
We redesigned ResNet50 in order to have the ca-
pabilities of processing two-dimensional data char-
acterized by a certain periodic structure. Although
the approach focuses on a single parameter SWH,
it will be extended in the future to other character-
istics, such as wave period, wave energy spectra,
directional wave spectra, and swell parameters, etc.
Compared to other studies, we collected our dataset
which includes both SeaVision images of the ocean
surface and simultaneous in situ measurements
of wave parameters during four research cruises,
covering more than 82 locations and containing
about 95 000 individual images. The SeaVision
hardware package was developed in order to create
a vast network of voluntary observing ships using
existing marine radars, thus, our goal is to develop
a fast yet generalizable algorithm based on ML
techniques for estimating wind wave characteristics
from marine navigation radar imagery. In this study,
we present a low-cost methodology for estimating
SWH from SeaVision data along a ship’s route,
which can overcome the cost constraints of existing
systems. The dataset of wave parameters measured
by the Spotter buoy and calculated from SeaVision
images with spectral methodologies is available at
PANGAEA [23] for the first three cruises. Further,
we will update the contents of this repository with the
new data acquired in upcoming cruises.

The paper is organized further as follows: in Sec-
tion 2 we provide details of our dataset collected in re-
search cruises; in Section 3, we present the method-
ology based on convolutional neural networks for es-
timating SWH from SeaVision imagery; in Section 4,

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol. 78 Suppl. 1 2023
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Table 1. Summary of undertaken scientific research marine cruises equipped with SeaVision and Spotter buoy for
collecting dataset of this study. Here, abbreviation ASV stands for the research vessel Akademik Sergey Vavilov,
and AI stands for the research vessel Akademik Ioffe

Mission name Departure Arrival Spotter buoy stations SeaVision stations

ASV50 Kaliningrad, Russia Arkhangelsk, Russia 24 157

Aug. 05, 2020 Sept. 07, 2020

AI57 Kaliningrad, Russia Arkhangelsk, Russia 12 76

June 29, 2020 July 11, .2021

AI58 Arkhangelsk, Russia Arkhangelsk, Russia 16 55

Aug. 04, .2020 Sept. 05, 2021

AI63 Kaliningrad, Russia Kaliningrad, Russia 30 209

Sept. 29, 2022 Dec. 07, 2022

TOTAL 82 497

(6.7 TB)

we provide the results of our experiments. In conclud-
ing Section 5, we summarize the study and highlight
its outlook.

2. DATA

In this study, we exploy a methodology for collect-
ing data similar to a previous study by Tilinina et al.
[6]. Since the paper of 2022, an additional marine
research mission has been carried out. Summarized
information on the cruises and the map of their routes
are presented in Table 1 and Fig. 2. In Table 1, we
present the departure and arrival ports along with the
number of stations where data from both the Spot-
ter buoy and the SeaVision were collected. Here,
a station is an event when the ship is drifting thus
providing suitable conditions for the measurements.
One may see that the number of Spotter buoy stations
differ from SeaVision stations in numbers. That is
correct. Since the engineering support for operations
at the buoy stations is much more complicated com-
pared to SeaVision operations, some of the SeaVision
stations are not supported by buoy measurements.
In this study, though, we employ the data of syn-
chronous observations of the Spotter buoy and the
SeaVision radar, that are just a subset of the data
summarized in Table 1.

In this study, we develop a machine learning model
for approximating SWH from SeaVision radar im-
agery. This ML problem is a supervised regression,
thus, one needs to provide a supervision, namely,
ground truth values for SWH for each SeaVision
radar image. In our study, we employ in situ Spotter
wave buoy measurements synchronous to SeaVision
radar imagery acquisition. The Spotter buoy is placed

in the water away from obstacles and objects dis-
turbing waving conditions; it measures vertical and
horizontal displacements of the ocean surface using
a set of acceleration and rotation sensors with up to
2.5 Hz sampling frequency [24]. Applying the spectral
processing methodology (see details in Tilinina et al.
[6]), we retrieve the ground truth for characteristics of
wind waves, including SWH.

During the four research cruises of Shirshov
Institute of Oceanology of the Russian Academy
of Sciences (see Table 1), we collected more than
95 000 SeaVision images and more than 62 h of
corresponding Spotter buoy in situ measurements.
Both SeaVision and Spotter buoy data are freely
available in PANGAEA repository [23].

2.1. Data Preprocessing

In this study, we exploit convolutional neural net-
works (CNNs). CNNs are statistical models char-
acterized by the property of learning the dependences
between two-dimensional features and a target vari-
able, namely, SWH. Following the routine proce-
dure, we normalized the target values linearly bring-
ing them to zero mean and unity variance.

At the same time, CNNs are characterized by
the sensitivity to noise in source data. ML models
are also known for their capability of extracting ir-
relevant dependences in the case of irrelevant data.
During exploratory data analysis of SeaVision radar
data, we found that there is a certain pattern in the
majority of the images. The most variable signal
is observed along the two directions perpendicular
to wave ridges (forward and backward w.r.t. waves

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol. 78 Suppl. 1 2023
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Seavision
Spotter

ASV50 (Aug. 5, 2020–Sept. 7, 2020)
AI57 (June 29, 2020–July 11, 2021)
AI58 (Aug. 4, 2020–Sept. 5, 2021)
AI63 (Sept. 29, 2022–Dec. 7, 2022)

Fig. 2. Map of the routes of our research vessels during
the four scientific research marine cruises.

propagation direction); yet, along the directions par-
allel to wave ridges, the variance of the signal and
its typical amplitudes are low. Thus, in our study,
we preprocess SeaVision images in a manner that
preserves relevant spatial features, meaning we select
and crop the 180-degree sector containing the most
variable signal (see Fig. 3). To do so, we compute
the variance of radar backscattered signal in each
pixel of the image through the time period of 5 min.
Then, we select the 180-degree sector that contains
maximum median variance. In Fig. 3, an example of
the resulting sector is presented. The values of the
variance and SeaVision radar data are normalized to
zero mean and unity variance.

CNNs are not inherently rotation invariant, and
they require diverse training data with varying spa-
tial features orientation to become rotation invariant.
In this study, one may presume that the orientation
of the spatial features may not have high diversity
of orientations. Thus, we applied two-dimensional
data augmentation to source SeaVision radar semi-
circles including the folowing: random rotation with
the angle ranging from −3◦ to 3◦; random transla-
tion with the shift uniformly sampled from the range

(а) (b)

(c) (d)

Fig. 3. SeaVision data preprocessing scheme:
(a) backscattered signal variance computed per pixel
through 5-min period; (b) an individual SeaVision radar
image; (c) the 180-degree sector that contains maximum
median variance; (d) the 180-degree sector of choice in
(c) rotated to unified orientaion occupying top semicircle.
Here, the variance and radar backscattered data are
normalized, thus, we do not present the colorbars. We
use colored values here in order to demonstrate the
spatial structure of the variance and backscattering
magnitude.

[−5%, 5%] (meaning percents of image size); scaling
with a scale factor uniformly sampled from the range
[0.95, 1.05]; random left-to-right flip with probability
p = 0.5. During the augmentation, we also inject
additive spatially correlated normal noise of small
scale σ = 0.05. This way, we encourage our CNN to
acquire invariance to rotation and translation prop-
erty through training on augmented data. Applying
augmentation, we also enhance generalization ability
of our CNN.

In order to retrieve ground truth for SWH, we
preprocess Spotter buoy readings in the manner de-
scribed in detail in Tilinina et al. [6]. In order to unify
the methodology, we compute SWH using a fixed
time window of 10 min.

3. METHODS

In this study, we employ a CNN that we de-
signed for processing SeaVision radar imagery pre-
processed in a way described in Subsection 2.1. We
constructed the architecture of our CNN following
the design of ResNet50 [25]. In contrast with the

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol. 78 Suppl. 1 2023
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Fig. 4. An example of positional encoding maps which we employ in our SinusoidalCoordConv layer in order to inject positional
information of spatial features.

original ResNet50, the fully-connected subnet fol-
lowing the convolutional part contains three sequen-
tial fully-connected layers of the widths 2048, 512,
and 128. The terminating layer is of the width 1
since in this study, we approximate scalar target value
SWH. The convolutional part of our modification
of ResNet50 is similar to the one described in the
original ResNet paper [25] with the reservation of in-
jected sinusoidal positional encoding of various wave-
lengths. We present this modification of convolu-
tional layer further in Subsection 3.1.

3.1. Sinusoidal Positional Encoding

As one may observe from Fig. 3, SeaVision radar
images of sea clutter in waving conditions are char-
acterized by some periodic patters with stochastic
placement, i.e., the wavelength spectrum of developed
wind waves is characterized by distinct modes. One
may want a CNN to be capable of capturing these
wavelengths using convolutional filters designed by
human experts. One more way to explicitly exploit
the knowledge of periodic spatial structure of waving
sea clutter is to use the Fourier Neural Operator [26].
In our study, we decided to use an alternative in-
spired by Transformers architecture as well as by
the study on the coordinate-injecting convolutional
layers [27]. We employ two-dimensional positional
encoding which means we inject additional channels
of generated harmonic maps characterized by various
wavelengths and directions. In particular, we gen-
erate the cosine- and sine-based positional encoding
channels varying in both horizontal and vertical direc-
tions. We concatenate these generated positional en-
coding maps with activation maps of ResNet building

blocks, thus, the next ResNet block processes activa-
tion maps from previous layers along with positional
encoding channels. We name these convolutional
layers injecting sinusoidal and cosinusoidal positional
encoding SinusoidalPositionalEmbedding. In Fig. 4,
we present the examples of sinusoidal positional en-
coding maps which we generate using this module.

In our modification of ResNet50, we do not inject
positional encoding maps into conventional ResNet
blocks. Instead, we inject it into activation maps of
each ResNet building block. In Fig. 5, we present
the high-level architecture of our CNN built following
this approach.

3.2. Training and Evaluation

Artificial neural networks are known to be highly
sensitive to the details of the training process, with
the choice of training algorithm and hyperparame-
ters being crucial in determining the quality of the
resulting model. The Adam algorithm [28] is currently
the most stable and widely used training algorithm
utilizing a momentum approach to estimate lower-
order moments of the loss function gradients. We
exploit the Adam optimization procedure in our study.

Of particular importance in optimization algo-
rithms are the batch size and learning rate. Given
the large size of SeaVision radar images, we were
unable to significantly vary the batch size, and instead
opted for the largest batch size that our computer
hardware could accommodate (batch_size=20) in
order to reduce noise in CNN gradient estimates.
We also adhered to best practices and optimized the
learning rate schedule to achieve not only high quality

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol. 78 Suppl. 1 2023
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in SWH regression, but also strong generalization
skills. Generalization can be assessed by examining
the gap between the quality estimated on the training
and testing subsets, with a small gap indicating
good generalization and a large gap indicating poor
generalization.

In accordance with the latest research, we utilized
a specialized learning rate schedule as proposed by
Loshchilov and Hutter in 2016 [29]. This cyclical
schedule incorporates a cosine-shaped decrease in
learning rate over training process along with mul-
tiple annealing simulations. Several modifications to
this schedule have been proposed in recent studies,
and we utilized a configuration that includes the fol-
lowing features:

• We implemented a multiplicative form of in-
crease in the period of simulated annealing
with each cosine cycle (see Eq. (1)):

Ti = T0k
(i−1)
T , (1)

where T0 is the number of batches in the first
cosine cycle until the first simulated annealing,
and T0 = 7168 in our study; kT is the mul-
tiplicative coefficient for the length of cosine
cycles, and kT = 1.5 in our study; i is the cycle
number starting from i = 1.

• We incorporated a linear increase in the learn-
ing rate prior to each cycle of cosine-shaped
learning rate decay to mitigate sudden changes
in gradient moments that can occur within the
Adam algorithm.

• We also applied exponential decay of simulated
annealing magnitude with each cosine cycle
using the multiplicative form (see Eq. (2));

Asa,i = Asa,0k
(i−1)
sa , (2)

where Asa refers to the scale of simulated an-
nealing relative to the initial learning rate, with
Asa,0 representing its initial value. In our study,
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Asa,0 = 1. The multiplicative coefficient ksa
was set to 0.8, indicating a decrease in simu-
lated annealing magnitude with each anneal-
ing cycle. Finally, i represents the cycle num-
ber, starting from i = 1.

The resulting learning rate schedule is presented
in Fig. 6.

3.3. Sampling Strategy for Reliable Quality
Assessment

In our study, we assess the quality of our solution
for SWH estimation with artificial neural networks
in terms of determination coefficient R2(SWHm,
SWHgt) and root mean squared error
RMSE(SWHm,SWHgt), where SWHm is the es-
timates of SWH with our CNN model, SWHgt is
ground truth SWH values computed using Spotter
buoy readings.

In studies exploring the use of statistical mod-
els, specifically artificial neural networks, in analyz-
ing remote sensing data to estimate significant wave
height, it is important to consider the autocorrelation
present in the observational time series dataset. Due
to the natural evolution of underlying physical phe-
nomena, successive observations may exhibit strong
autocorrelation, which can affect the accuracy of the
model.

In machine learning, it is common to evaluate the
model’s performance by estimating quality metrics on
a testing subset acquired through random sampling
from the original set of labeled examples. However,
this approach assumes that the examples are inde-
pendent and identically distributed (i.i.d.), which may
not hold true for successive SeaVision radar images
with strong autocorrelation. Thus, it is crucial to
avoid systematically adding successive examples to

the training and testing sets, and instead use meth-
ods of sampling specifically designed for time-series
data [30–33].

In this study, we address the issue of strongly
correlated successive examples by implementing
station-wise random sampling, similar to sampling
strategy employed in [14–16], which allows for avoid-
ing systematic sampling of successive examples to
the training and testing/validation subsets. By doing
so, we assess the quality of our model reliably.

Another challenge in statistical modelling is the
issue of covariate shift, which refers to a degraded
model quality when evaluating it with testing data
characterized by a shifted distribution compared to
the training subset. To reliably assess model quality,
the testing/validation subset of data should follow the
same distribution as the training subset.

In our study, we propose a simple sampling strat-
egy to encourage, but not guarantee, matching distri-
butions of data in the training, validation, and testing
subsets. Specifically, we employ station-wise sam-
pling stratified with respect to the mean significant
wave height (SWH). Figure 7 presents the overall
distribution of the target variable (SWH) and an ex-
ample of the training-validation-testing split in the
form of example counts shown by different colors in
each bin of the histogram. By using this strategy, we
can help ensure that the model is accurately evaluated
and trained on data with similar distributions.

To evaluate the effectiveness of our sampling strat-
egy, we utilized seven different train-test splits. We
trained the network on the training subset and evalu-
ated the quality metrics on the testing subset for each
split. Next, we estimated the mean for each quality
metric and assessed their uncertainty Sm, where m
represents a metric.

To assess Sm, we assumed normal distributions
for each metric and calculated Sm as a confidence
interval with a 95% confidence level based on the
sample estimate of the standard deviation computed
using the sample of seven train-test splits.

4. RESULTS AND DISCUSSION

Using the sampling strategy described in Sub-
section 3.3 and data preprocessing routine proposed
in Subsection 2.1, we trained the CNN presented in
Section 3 on the dataset that we collected in our sci-
entific marine cruises (see its summary in Section 2).
In this section, we present the results of our approach
to estimating SWH from SeaVision radar imagery.

In Fig. 8, we present a scatter diagram demon-
strating accordance between SWH values, estimated
by our CNN using SeaVision radar imagery, and

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol. 78 Suppl. 1 2023



ESTIMATING SIGNIFICANT WAVE HEIGHT S135

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Ground truth SWH, m

A
pp

ro
xi

m
at

ed
 S

W
H

, m

Cruise
ASV50
AI57
AI58
AI63

R = 0.842
R2 = 0.709
RMSE = 0.484

Fig. 8. Scatter diagram of approximated SWH in our
study.

ground truth SWH values estimated using Spot-
ter buoy measurements. The data points in the
scatter diagram are the points of averaged values
from each buoy station accompanied by SeaVision
radar imagery. Only hold-out subsets of each train-
validation-test split are shown in this scatter diagram.
One may clearly see that the correspondence between
approximated SWH and ground truth SWH is good,
and the uncertainty is not very high. The determi-
nation coefficient is R2 = 0.71, which means high
correlation R = 0.84; and root mean squared error
of our CNN-based solution is RMSE = 0.48 m.

In Fig. 8, one may see that there are several out-
liers in low range of SWH, in particular, one station
from AI57 cruise and one station from AI58 cruise. It
is worth mentioning that there are known limitations
of estimating wind wave characteristics in the case
of weak winds (wind speed lower that 3 m/s) or low
SWH (SWH lower that 0.5 m). Thus, one may argue
that a CNN should be even applied in these cases. We
may see, however, that our CNN generally estimates
SWH in good accordance with ground truth even
in the case of unfavourable (low) wind speeds and
significant wave heights.

One may also note a high uncertainty in a high
SWH range. We assume that this issue is due to poor
data endowment in a high range of target variable
SWH. Indeed, from Fig. 7, one may see that the dis-
tribution of SWH is skewed towards low SWH val-
ues, and there are no events characterized by SWH
exceeding 5 m. It is a known issue of monitoring
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Fig. 9. Error distribution of our CNN. We also show here
the kernel density estimate of error distribution with the
smooth line on top of the histogram.

experiments in far seas involving ship-based expe-
ditions. Indeed, the measurements with the Spotter
buoy are performed given the ship drifting in order
to avoid the influence of both ship-induced waves
and ship-enforced migration of the buoy, since these
factors both may introduce bias into the estimates of
wind wave characteristics. At the same time, keeping
a sea vessel adrift preserving it in a controlled state is
a difficult task in the case of strong winds or excessive
sea waving. Thus, captains commonly do not risk
setting our ships adrift in these weather conditions.
We plan to extend our dataset of SeaVision imagery
accompanied by independent ground truth estimates
of sea wave characteristics within alternative setting
of the measurement experiment involving underwa-
ter acoustic wave gauges or acoustic Doppler cur-
rent profilers (ADCP) mounted on moorings at the
seabed.

In Fig. 9, we present the distribution of errors of
CNN-based SWH estimates. The errors are com-
puted in comparison with Spotter buoy ground truth
estimates. One may see that the error distribution is
zero-centered. Yet one may observe the outliers in
the range of high positive errors. Thus, in some rare
cases, our CNN overestimates SWH. At the same
time, our CNN is not strongly prone to underestimate
SWH.

5. CONCLUSIONS

In this study, we present a statistical model
based on convolutional neural networks (CNN) for
estimating wind wave characteristics, in particular,
a significant wave height (SWH), from the imagery
of X-band marine navigation radar captured and
digitized by the SeaVision hardware package. The
architecture of our CNN is inspired by ResNet50 with
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the modifications of sinusoidal positional encoding,
which allows for exploiting periodic structure of
wind waves when processing the SeaVision-captured
radar imagery of sea clutter. We demonstrate that our
approach delivers high-quality estimates character-
ized by the determination coefficient R2 = 0.71, cor-
relation coefficient R = 0.84, and root mean squared
error RMSE = 0.48 m, which is close to common
quality metrics of classical Fourier-based methods.
The need for just one SeaVision radar image in
estimating SWH is a strong advantage of the CNN-
based approach compared to classical Fourier-based
analysis which is characterized by the need of 20 min
of radar imagery. One may also note an issue of low
data endowment in the range of high SWH values,
which has a consequence of suboptimal estimates
quality in this range. One may also assume degraded
estimation quality in the range of SWH which is not
present in the training dataset, meaning that CNN
may not exhibit a strong extrapolation ability.

In future work, we are going to extend our dataset
to include a larger range of SWH values, particularly
in the high range where there is currently poor data
endowment. This will make it possible to improve the
robustness of our CNN-based approach and ensure
that it delivers high-quality estimates across the en-
tire range of SWH values. In addition, we plan to
explore the use of pretraining our CNN on synthetic
radar imagery of sea clutter to improve the approxi-
mation quality. This pretraining will allow the CNN
to learn from a larger and more diverse set of data,
which should enhance its ability to generalize and
extrapolate beyond the range of SWH values present
in the training dataset.

Our approach for estimating ocean wave charac-
teristics from shipborne navigation X-band radar data
captured by the SeaVision hardware package, which
uses artificial neural networks, has the potential to
revolutionize global monitoring of ocean waves. Our
method is fully automated and computationally inex-
pensive making it an efficient and cost-effective so-
lution for estimating wave characteristics from radar
imagery.
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