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Abstract—Marine X-band radar is an important navigational tool that records signals reflected from the
sea surface. Theoretical studies show that the initial unfiltered signal contains information about the
sea surface state, including wind wave parameters. Physical laws describing the intensity of the signal
reflected from the rough surface are the basis of the classical approaches for significant wave height (SWH)
estimation. Nevertheless, the latest research claims the possibility of SWH approximation using machine
learning models. Both classical and AI-based approaches require in situ data collected during expensive
sea expeditions or with wave monitoring systems. An alternative to real data is generation of synthetic radar
images with certain wind wave parameters. This Fourier-based approach is capable of modelling the sea
clutter images for wind waves of any given height. Assuming a fully-developed sea, we generate synthetic
images from the Pierson–Moskowitz wave spectrum. After that, we apply an unsupervised learning using
synthetic radar images to train the convolutional part of the neural network as the encoding part of the
autoencoder. In this study, we demonstrate how the accuracy of SWH estimation based on radar images
changes when the neural network is pretrained on synthetic data.
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1. INTRODUCTION

Climate change is one of the most serious prob-
lems of the modern world. In particular, it causes
local precipitation patterns and local changes in wind
speed [1]. Climate change studies require descrip-
tion of physical processes and interactions in the
atmosphere-ocean system. These sea-wave interac-
tions strongly depend on surface wind speed and wind
waves. For example, long-term climate reconstruc-
tions, such as Global Atlas of the Ocean Waves [2],
consume different ocean wave parameters.

Marine X-band radars are important for ship
navigation and safety because they detect obstacles.
However, raw radar images of the sea clutter also
contain meaningful information. Spatial distribution
of the reflected signal allows deriving characteristics
of wind waves and swell. Furthermore, with radar
images, we can estimate significant wave height

*E-mail: rezvov.vyu@phystech.edu

(SWH), which is one of the most important sea
surface values.

The classical method uses Fourier analysis and
linear dispersion relationship to detect the wave signal
on the time series of radar data. The necessity of
modulation transfer function and calibration coeffi-
cients specific for each radar antenna [3] limits the
generalizing ability of this methodology. Despite this
fact, the classical method is widely used for real-time
approximation of ocean wave parameters from the
back-scatter spectrum of radar images [4, 5].

Besides classical approach, radar data processing
also includes methods that have a potential to be
faster and more independent of radar antenna. Some
publications also demonstrate higher quality of SWH
estimation in contemporary AI-based techniques [6]
compared to classical approaches. In the machine-
learning group of methods, the functional relationship
between a radar image and the appropriate SWH
is approximated by training a model on a massive
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Table 1. Research expeditions

Expedition Departure Arrival No. of Spotter buoy
locations

No. of SeaVision
locations

ASV50 Kaliningrad, Russia,
7 Aug 2020

Arkhangelsk, Russia,
13 Sep 2020 24 157

AI57 Kaliningrad, Russia,
25 Jun 2021

Arkhangelsk, Russia,
21 Jul 2021

12 76

AI58 Kaliningrad, Russia,
10 Aug 2021

Kaliningrad, Russia,
9 Sep 2021 16 55

AI63 Arkhangelsk, Russia,
29 Sep 2022

Arkhangelsk, Russia,
7 Dec 2022

30 209

Total 82 497

dataset. Consequently, approximation quality and
generalization ability heavily rely on dataset size and
distribution.

The authors of [7] solve the problem of insufficient
data with the help of an algorithm of generating syn-
thetic radar images with any given SWH. A similar
approach is based on the Fourier synthesis of a re-
alistic ocean surface [8]. The artificial sea surface is
processed to obtain a realistic X-band radar image.
Although [7] does not implement image synthesis
as part of a machine-learning approach, we suppose
that a combination of an artificial neural network and
a synthetic dataset is able to increase the model’s
quality.

Convolutional neural networks (CNNs) demon-
strate their efficiency in image recognition and fea-
ture extraction across different branches of science,
including geosciences. For example, [9] shows a
CNN application for real-time SWH estimation from
a series of real ocean photo images.

Summing up, recent advances in artificial neu-
ral networks and the emergence of contemporary
machine-learning techniques have led to a significant
increase in the variety of radar image processing
methods. However, the results of research on this
topic are contradictory, and several questions remain
relevant. Therefore, the assessment of contemporary
methods for radar image generation and SWH esti-
mation is still a task of current scientific interest.

In this paper, we present an application of the
convolutional neural network to the dataset of real
marine radar images of sea clutter to estimate signifi-
cant wave height. We preliminarily train an AI-based
autoencoder on synthetic radar images. After that, we
use the pre-trained encoder as a part of the proposed
CNN.

The paper is organized as follows. In Section 2 we
provide the details of the real radar image dataset and

the methodology of the radar image synthesis. Sec-
tion 3 describes the architecture of the applied neural
network, quality metrics and training and evaluation
procedures. In Section 4, we provide the results
and their analysis. Concluding remarks are made in
Section 5.

2. MATERIALS AND METHODS

2.1. Initial Data

In this study, we adhere to the methodology of data
collection from [5]. We use data samples from four re-
search expeditions in the Atlantic and Arctic oceans,
carried out by the Shirshov Institute of Oceanology of
the Russian Academy of Sciences within the govern-
mental program of regular ocean observations.

The expeditional pathways contain points
of SeaVision and Spotter buoy measurements. We
provide general information about research cruises
in Table 1. The locations of sea wave observations
were determined by local weather conditions and time
availability. Hereafter, we define “stations” as the
locations of wind wave observations.

For each station we collect simultaneous in situ
observations, X-band radar signal as sea clutter
images, and/or Spotter wave buoy (https://www.
sofarocean.com/products/spotter) measure-
ments. In this study, we only use stations that provide
data from both the Spotter buoy and SeaVision at
the same time despite the fact that the whole dataset
contains locations with only SeaVision measure-
ments (Table 1). Availability of Spotter-SeaVision
data pairs is necessary for proper learning of artificial
neural networks.

The Spotter wave buoy provides highly accurate
estimations of wind wave characteristics and collects
the training dataset of SWH. SeaVision provides one
sea clutter image per two seconds.
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Fig. 1. An example of a preprocessed radar image from
the AI57 marine research mission of the Institute of
Oceanology of the Russian Academy of Sciences. Here,
the magnitude of the back-scattered radar signal is pre-
sented in grayscale. The position of the shipborne navi-
gation X-band radar is at (0, 0) in these coordinates.

The center of the digitized sea clutter images co-
incides with the location of the ship. Images cover
>7 km radius around the ship with the spatial res-
olution of 1.875 m. The image contains a signal
of variegated structure and intensity caused by local
wind direction, ship rotation and the electromag-
netic signal reflection from the rough ocean surface
(e.g., [10]).

Each image has an area where the wave field is
expected to provide the most distinct signal. Images
also have a “blind” zone near the center due to sig-
nal reflection from the ship. We exclude the part of
the image within a 30-m radius around the ship to
avoid this effect. Then, we suppose that a 3500 m
radius ensures the highest significant variability ob-
served in radar data. As a result, we choose the
30–3500 m range for further processing. As the
distance from the ship increases, the reflected signal
becomes less distinct; thus, we select only the first
1024 pixels for every direction, equal to a 1920 m
radius from the radar antenna.

One of the important steps in data preprocessing is
the choice of the optimal 180◦ sector containing pure
wave signal. The algorithm used in this paper extracts
the most contrasting area from the entire radar image
to provide the most clearly identified wind waves. For
every station, the sector with the largest standard
deviation over time is the optimal sector. Hence,
in this study, considering the spatial resolution of
1.875 m, we work with 2048 × 2048 pixels images, in
contradistinction to 384 × 384 in [4]. An example of
the preprocessed radar image is shown in Fig. 1.

2.2. Synthesis of Sea Surface Images
We elaborate on the methodology of generating

realistic synthetic radar images based on [7] and re-
alistic ocean scenes from [8]. The authors of [8]
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Fig. 2. White-noise-generated image as the first step of
the algorithm for simulating a radar image of sea clutter.

developed a technique to present a fully developed sea
using an empirical modified Pierson–Moskowitz sea
spectrum [9].

According to [8], we first generate white-noise
images with uniformly distributed noise having inten-
sities from −0.5 to 0.5. We assume that the spatial
resolution of the gray image is 1.875 m, equal to that
of the real radar images. The result of this step is a
2088× 2088 pixels image of random gray shades (see
Fig. 2).

After that, we perform the two-dimensional for-
ward Fourier transform of the image to generate an
array of complex numbers. The magnitude of these
complex Fourier components is shown in Fig. 3.

In this research, we assume fully developed wind
waves. Thus, the wave spectrum remains con-

–0.2

–0.1

0

0.1

2000

1500

1000

500

0

0.2

–0.2 –0.1 0 0.1 0.2
kx, m–1

k y
, m

–
1

Fig. 3. Fourier transform magnitude of the white-noise
image from Fig. 2.
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Fig. 4. Pierson–Moskowitz spectral filter for white-noise
Fourier components.
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Fig. 5. Filtered magnitudes of white-noise Fourier com-
ponents from Fig. 3.

stant. Under these assumptions, W. Pierson and
L. Moskowitz mathematically modeled the downwind
power spectrum FPM(f) [9]:

FPM(f) =
αg2

(2π)4f5
exp

[
−5

4

(
fm
f

)4
]
, (1)

where f is the frequency [Hz], fm is the peak fre-
quency [Hz], α = 0.0081 is the Phillips constant, and
g is the gravitational constant.

We can immediately obtain fm from 10 m surface
wind speed U10 [9]:

fm ≈ 0.13
g

U10
. (2)

By definition, the significant wave height is the
mean wave height of the highest third of the waves in

the wave record: SWH = 1
N/3

∑N/3
j=1 Hj . For a given

power spectrum S(ω), the significant wave height:

SWH = 4
√∫ +∞

0 S(ω) dω. Thus, from (2), for the
Pierson–Moskowitz spectrum (1), we obtain:

SWH ≈ 0.22
U10

2

g
. (3)

The importance of (1) is that it depends on only
one parameter—the peak frequency fm. Moreover,
the surface wind U10, the significant wave height
SWH and the peak frequency fm strictly depend
on each other. Thereby, we can calculate the one-
dimensional, in the direction of the wind, fully devel-
oped spectrum from (1) using either U10 or SWH (3).
To take into account the wind direction, the authors of
[11] suggested a two-dimensional spectrum F (f, ϕ):

F (f, ϕ) = FPM(f)D(f, ϕ), (4)

where FPM(f) is the one-dimensional Pierson–
Moskowitz spectrum and D(f, ϕ) is a normalized
directional multiplier weighting the spectrum at angle
ϕ from the downwind direction. According to [11]:

D(f, ϕ) =
Γ2(p+ 1)

21−2pπΓ(2p+ 1)

[
cos

(ϕ
2

)]2p
, (5)

where

p = 9.77

(
f

fm

)μ

and

μ =

{
4.06, f ≤ fm

−2.34, f > fm.

The example of the normalized filter
FPM(f)D(f, ϕ) for a wind speed of 15 m/s is shown
in Fig. 4.

We multiply two-dimensional spectrum of fully
developed wind waves (4) by the magnitudes of the
Fourier components of the initial white-noise image.

Our two-dimensional white-noise spectrum cre-
ates a narrower profile near fm (2) in the downwind
direction of the spectrum and forms a bimodal spec-
trum shape for ϕ near 90◦ from downwind. The
resulting spectrum suppresses the long-crested peak
frequency components, while retaining the nonpeak
frequency [8]. The filtered magnitudes of the white-
noise Fourier components from Fig. 3 are shown in
Fig. 5.

Next, we combine the filtered magnitudes and
the original phase of the white-noise Fourier compo-
nents. After that, we use the inverse Fourier trans-
form of the filtered components to generate a 2088 ×
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Fig. 6. The synthetic ocean image created by processing the white-noise image from Fig. 2: (a) full image; (b) 200 m × 200 m
area.

2088 array of complex numbers [8]. The real part
of this array is a synthetic sea surface image. The
realistic result on different scales is shown in Fig. 6.

2.3. Synthesis of Radar Images

We convert sea surface images obtained in Sub-
section 2.2 to radar images.

First, from the 2088 × 2088 array of the sea sur-
face, we select points that correspond to distances
on the real radar images described in Subsection 2.1.
The resulting “radar area” is shown in Fig. 7.

After that, we include two main simple geometri-
cal effects that influence the X-band signal reflected
from the sea surface: shadowing and tilt modulation
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Fig. 7. Synthetic sea surface in the radar image area.

[7]. Then, we shortly summarize the model proposed
by [12] modified by [7].

We describe the shadowing effect using the ge-
ometrical optics approximation. In some areas, the
sea surface prevents the reflection of radar rays from
other parts of the surface and causes shadowing of the
nearby waves. Consequently, the radar antenna does
not receive any signal from the shadowed parts of the
sea surface [7]. Obviously, this phenomenon depends
on the grazing angle and the antenna height Za, so
it becomes more severe with increasing distance from
the radar (Fig. 8).

For simplification, we assert that the shadowed
area signal is equal to zero. Hence, the coefficient
of the synthetic image shadowing is given by the
equation below:

Msh(�r) =

{
0, if �r ∈ shadowed area

1, otherwise.

The result of the shadowing effect is H(�r)Msh(�r),
where H(�r) is a sea surface field.

In the case of tilt modulation, the steepness of
the observed surface slope affects the power ampli-
tude received by the radar antenna [7]. Thus, the
received back-scattered signal is modulated by the
angle θ between the radar illumination ray �u(�r) and
the normal vector �n(�r) to the wave surface (Fig. 8).
The antenna receives the signal modulated by the
coefficient Mtilt(�r) = �u(�r) · �n(�r). Since �u(�r) and �n(�r)
are vectors of length 1, the tilt modulation coefficient
for every point �r on the sea surface is:

Mtilt(�r) =

{
0, if �r ∈ shadowed area

cos θ, otherwise.
(6)
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Fig. 8. Geometrical scheme of shadowing and tilt modulation effects [7].

Summing up, the resulting amplitude of the
back-scattered signal on a synthetic radar image is
Msh(�r)Mtilt(�r).

2.4. Dataset of Synthetic Images

In our study, we generate a set of 10 000 radar
images.

First, we generate 10 000 values of the U10 speed,
which is directly connected with the SWH value (3)
and the power spectrum of wind waves (2), (5). The
wind speed is distributed uniformly from 3 to 20 m/s
to ensure proper learning quality.

After that, for every wind speed value, we generate
a corresponding 2088 × 2088 image, as described in
Subsection 2.2. Then, for every point in the range
from 30 m to 1920 m from the center of the sea surface
field, we compute the shadowing effect coefficient.
This 30–1920 m range coincides with that of real
radar images. The example of the shadowing effect
for the sea surface from Fig. 7 is shown in Fig. 9.

For the points outside the shadowed areas, we
compute the grazing angles assuming that the radar
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Fig. 9. Shadowing effect for wave height field from Fig. 7.

antenna height Za = 20 m. As described above, in
Subsection 2.3, we evaluate angle θ and, as a result,
tilt modulation effect Mtilt(�r). The example of this
effect for the sea surface from Fig. 7 is shown in
Fig. 10.

To exclude edge effects, we remove points from
every side of the synthesized radar image resulting in
a 2048× 2048 array of the back-scattered signal am-
plitude. We divide this square image into two halves
with a 1024 × 2048 size. We choose the direction of
the image incision so that the first half corresponds
to the downwind direction, and the second half corre-
sponds to the upwind direction. The resulting shape
is equal to that of real data.

This procedure leads to 20 000 samples of syn-
thetic radar images. The examples for different values
of U10 wind speed are in Fig. 11.

3. AI-BASED MODELS

3.1. Baseline Model
As an example of a deep-learning model, we use

a convolutional neural network (CNN). CNNs are a
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Fig. 10. Tilt modulationMtilt(�r) for wave height field from
Fig. 7.
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Fig. 11. Examples of synthetic radar images with different U10 wind speeds: (a) 4; (b) 12; (c) 20 m/s.

kind of artificial neural networks (ANNs). ANNs, in
short, are parametric mappings that optimize model
parameters during the model training. This approach
identifies various abstract features of the input data.
Particularly, in CNNs, a fixed-size convolution kernel
is sequentially applied to regular input data. For each
convolutional layer, the convolution kernel is a set of
trained parameters in the form of an array [13].

Increasing CNN depth is expected to improve
the quality of output prediction. However, such an
increase leads to training instability of the back-
propagation algorithm. Learning becomes inefficient
due to “vanishing gradients.” This negative effect
accumulates extremely small gradients of model
parameters. As a result, the product of the gradient
vector and the learning rate coefficient tends to zero,
and the parameters updated at each optimization step
remain constant. The effect of “vanishing gradient”
remains a significant problem for CNNs [13].

One of the effective ways to solve the problem of
learning instability is to add connections that skip the
intermediate layers of the model. These connections
reduce the risk of accumulating small gradients. An
example of this is residual connections, which add the
output from one intermediate layer to the output of
a subsequent layer. Residual connections allow the
model to use outputs from the initial layers at the
beginning of the network [13].

We combine the advantages of deep CNNs and
residual connections in the modified ResNet-50,
based on [14]. In our study, CNN obtains SWH value
from a real 1024 × 2048 radar image. The proposed
network includes an input layer for extracting raw
features, followed by a sequence of convolutional
layers and residual blocks for processing the extracted
features. Unlike the original ResNet-50, we replace
ReLU activation with Mish activation [15]:

Mish(x) = x tanh [Softplus(x)] .

The input is not a 3-channel RGB image, so we
change the number of input and output channels of
the first convolutional layer from 3 to 1 and from
64 to 128, respectively. We also change the fully-
connected (FC) layer between the last convolution
and the output. The input of this layer is now a vector
with a length of 2048. The output of the modified
ResNet-50 is one number which is learnt to be equal
to SWH for this radar image. The outline of the
modified ResNet-50, along with its residual blocks,
is shown in Fig. 12.

3.2. Autoencoder

Autoencoders are an example of unsupervised ma-
chine learning. They are ANN models consisting of
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Fig. 12. Outline of the modified ResNet-50 architecture [16].

an encoder and a decoder. The encoder converts com-
plex input features into a lower number of dimensions
from the unlabeled data [17]. The result of the decoder
is a latent vector that is a vector in a low-dimensional
latent space. Thus, the last layer of the encoder is also
referred to as a “bottleneck layer”. Then, the decoder
tries to reconstruct the original complex input from
the simpler encoded features in the latent space [18].

In this work, the autoencoder is used as a model for
pretraining. The weights of the trained encoder are
then applied to the training of the modified ResNet-
50. The layer-by-layer description of our autoencoder
is shown in Table 2.

Our convolutional encoder starts with an input
synthetic image of a 1024 × 2048 size. The synthetic
and the real radar images are shape-like. Conse-
quently, for the encoder, we use the modified ResNet-
50 without its last FC layer—“convolutional part of
the modified ResNet-50.” The output of the encoder
is a latent vector with a length of 2048. The bot-
tleneck layer is a FC layer increasing the number of
channels from 2048 to 32× 32× 32 = 32 768 chan-
nels. This is required for a proper further increase in
spatial dimensions.

After the bottleneck layer, we build a sequence of
five convolutional blocks. Every convolutional block
consists of upsampling operation, two convolutional
layers, batch normalization for learning stability,
and the Mish activation. We employ a special up-
sampling operation, namely, PixelShuffle, presented

in [19] as an efficient and flexible, yet trainable,
alternative for the upsampling procedure instead of
the interpolation-based upsampling and transposed
convolution. In general, PixelShuffle rearranges
elements in a tensor of shape (C × r2,H,W ) to
a tensor of shape (C,H × r,W × r), hence, this
function requires a sufficient number of input chan-
nels. Nevertheless, we consider PixelShuffle to be
more effective and appropriate than Upsample func-
tion, because Upsample function, especially in the
beginning of the decoder, causes “checkerboard”
artifacts [20].

The output of five convolutional blocks is 4×
512 × 512. By definition, PixelShuffle preserves
the ratio of the spatial dimensions, therefore, we add
Upsample in convolutional blocks nos. 6 and 7 to
convert a square image to a rectangular one with
minimal loss of quality. Negative effects of Upsample
are also minimized by a bigger kernel size 7× 7 (con-
volutional block no. 6) and 9× 9 (convolutional block
no. 7). The output of the decoder is an image, with
the same 1024 × 2048 size as it is for the input.

3.3. Quality Metrics

We consider various quality metrics to compare
models and track learning properly. For the autoen-
coder, we use the simplest quality metrics—the root
mean-squared error. We refer to it as RMSEAE .
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Table 2. Autoencoder outline

Autoencoder component Layers Output size

Encoder Convolutional part of modified ResNet-50 [2048, 1, 1]

Bottleneck layer Fully-connected layer
(2048 → 32× 32× 32 channels) [32 768, 1, 1]

Decoder

• PixelShuffle (upscale factor = 32)

[64, 32, 32]• 3× 3 convolutions, 32 → 128 → 64 channels

• Batch normalization + Mish activation

• PixelShuffle (upscale factor = 2)

[32, 64, 64]• 3× 3 convolutions, 16 → 64 → 32 channels

• Batch normalization + Mish activation

• PixelShuffle (upscale factor = 2)

[16, 128, 128]• 3× 3 convolutions, 8 → 32 → 16 channels

• Batch normalization + Mish activation

• PixelShuffle (upscale factor = 2)

[8, 256, 256]• 3× 3 convolutions, 4 → 16 → 8 channels

• Batch normalization + Mish activation

• PixelShuffle (upscale factor = 2)

[4, 512, 512]• 3× 3 convolutions, 2 → 8 → 4 channels

• Batch normalization + Mish activation

• Upsample (512, 512)→ (768, 1024)

[2, 768, 1024]• 7× 7 convolution, 4 → 2 channels

• Batch normalization + Mish activation

• Upsample (768, 1024)→ (1024, 2048)
[1, 1024, 2048]

• 9× 9 convolution, 2 → 1 channels

This type of the reconstruction error is the difference
between the input data and the data after the au-
toencoder compresses and decompresses the input.
RMSEAE evaluates the noise added to the input by
running through the autoencoder.

If we denote our autoencoder model as AE and a
batch of input images as y, then the output batch is
y∗ = AE(y). We compute RMSEAE summarizing
only by points that are within the radius range from
30 to 1920 m to exclude nonmeaningful areas of the
radar image. The number of points in the input batch
is Wbatch, and the result is:

RMSEAE =

√
1

Wbatch

∑
i,j,k

(y∗i,j,k − yi,j,k)2. (7)

In (7), yi,j,k and y∗i,j,k are the identical elements
of the input and the output tensors. We summarize

the difference between the input and the output point-
by-point. The indices i, j, and k are in ranges of
respective spatial dimensions and batch size, taking
into account a 30–1920 m mask.

It is shown that for images, RMSE fails to re-
veal defective regions that have been visually altered
when intensity values stay roughly consistent [21]. In
this study, we use a perceptual quality metric based
on structural similarity that checks interdependences
between local image regions. In contrast to com-
paring pixel values in RMSE, structural similarity
also considers contrast and structural information.
The structural similarity index measure (SSIM) is
computed as follows:

SSIM(y, y∗) =
(2μμ∗ + C1) (2σyy∗ + C2)

(μ2 + μ∗2 + C1) (σ2 + σ∗2 + C2)
,

where μ is the pixel sample mean of y, μ∗ is the pixel
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sample mean of y∗, σ2 is the variance of y, σ∗2 is the
variance of y∗, σyy∗ is the cross-correlation of y and
y∗. C1 and C2 are constant values equal to 0.012 and
0.032, respectively.

In this paper, SSIM is measured between two
windows of the size 128 × 128 pixels, applied to the
input and the output images. SSIM is between −1
and 1. The higher SSIM indicates higher similarity.

For the modified ResNet-50, we use only RMSE
because the output of this CNN is a vector of
significant wave height values with the length of
batch size BS:

RMSE =

√√√√ 1

BS

BS∑
k=1

(SWH∗
k − SWHk)2,

where SWH is a true value measured by the Spot-
ter buoy (Subsection 2.1), and SWH∗ is the output
value of the corresponding real radar image.

3.4. Model Training and Evaluation

First, we train the autoencoder. We randomly
split the dataset of 20 000 synthetic radar images
into three parts: training dataset (14 000 images),
validation dataset (3000 images), and testing dataset
(3000 images). During training and evaluation, we
load images into our model in the batches of 2 on
account of memory restriction. The random split pro-
vides the uniform distribution of modeled wind wave
conditions in all three datasets. As described above,
the input is acquired as a batch of single-channel
gray-scale images.

We train the autoencoder with point-by-point
mean-squared-error (MSE) loss, excluding points
out of the radius range from 30 to 1920 m. The
masked MSE allows training only areas with mean-
ingful radar information. All the parameters both
in the encoder, and in the decoder are trained.
The proposed autoencoder network is trained for
100 epochs using the ADAM [22] optimizer with an
initial learning rate of 0.05. We set the learning rate
of each parameter group using a cosine annealing
schedule, where the maximum learning rate is equal
to the initial learning rate and the minimum learning
rate before the restart equal to 1× 10−6. The restarts
are on epochs 25 and 75. In every restart, the learning
rate decay is 0.75.

After every training epoch, we evaluate the re-
construction quality with RMSEAE and SSIM on
the validation dataset (Subsection 3.3). We stop
the autoencoder training after epoch 100 before the
restart on epoch 150. We suppose that training is sat-
urated because RMSEAE and SSIM remain almost

constant. After training, we provide final evaluation
on the testing dataset with the same quality metrics.

For the modified ResNet-50, we also split the
dataset of the real images into three parts: the training
dataset (70%), the validation dataset (15%) and the
testing dataset (15%). The batch size is 20 for both
training and evaluation procedures. The training loss
for experiments with the modified ResNet-50 is sim-
ple MSE loss.

The first experiment on this architecture is a base-
line model—we train the whole modified ResNet-50
without any pretrained weights. In this case, the
CNN is trained for 64 epochs using the ADAM [22]
optimizer with an initial learning rate of 1× 10−4.
We set the cosine annealing schedule with the max-
imum learning rate equal to the initial learning rate
and the minimum learning rate equal to 5× 10−7.
The restarts should have been on epoch 128 but the
training is saturated after epoch 64. After every train-
ing epoch, we evaluate SWH regression quality with
RMSE on the validation dataset (Subsection 3.3).
After training, we provide final evaluation on the test-
ing dataset with the same quality metric.

Before the second experiment, we save the pa-
rameters of the encoding part of the autoencoder (see
Table 2). After that, we load the saved weights into
the convolutional part of the modified
ResNet-50. We train ResNet-50 for 40 epochs with
the “frozen” convolutional pretrained weights. Thus,
the first 40 epochs are aimed at fully-convolutional
layer learning. The optimizer is ADAM [22] with an
initial learning rate of 1. We set the cosine annealing
schedule with the maximum learning rate equal to the
initial learning rate and the minimum learning rate
equal to 1× 10−4. The learning rate restarts at epoch
20 with 0.75 decay.

After learning with the pretrained convolutional
part, we “unfreeze” convolutional weights, restart
the learning rate and train the “unfreezed” model for
140 epochs. After every training epoch, we evaluate
SWH regression quality with RMSE on the valida-
tion dataset and after epoch 180 we finally evaluate
the model on the testing dataset.

4. RESULTS AND DISCUSSION

4.1. Autoencoder Reconstruction

Table 3 shows the results of the autoencoder
training.

For 100 epochs, the autoencoder is trained from
0.824 to 0.767 in RMSEAE and from −0.025 to
0.090 in SSIM. The validation dataset shows a simi-
lar trend—RMSEAE decreases from 0.782 to 0.768
and SSIM decreases from −0.107 to 0.116. No-
ticeably, SSIM and RMSEAE are weakly correlated
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Table 3. Autoencoder training and evaluation

Epoch
Training dataset Validation dataset

RMSEAE SSIM RMSEAE SSIM

1 0.824 −0.025 0.782 −0.107

25 0.772 0.071 0.763 0.070

50 0.776 0.039 0.770 0.050

75 0.768 0.049 0.770 0.027

100 0.767 0.090 0.768 0.116

Testing dataset

0.775 0.151

and decrease nonsimultaneously. We explain it by
different characteristic scales of these two quality
metrics. RMSEAE is very sensitive to point-by-
point errors that have a particularly strong influence
on large images. Conversely, SSIM emphasizes mid-
scale structure and changes nonmonotonously, be-
cause the optimized loss is point-by-point.

From Table 3, we also notice that our autoencoder
is not overfitting, because after traning, RMSEAE for
the training and the validation datasets are close, and
testing RMSEAE is slightly lower. An interesting
fact is that testing SSIM is much higher than that of
the validation quality. This is one more confirmation
of RMSEAE and SSIM noncorrelation.

The examples of autoencoder reconstructions are
shown in Fig. 13.

Figure 13 shows that the reconstructed images
from the testing dataset are smoothed and do not
resolve the wave structure of the sea surface. The re-
constructed amplitude of the back-scatter signal de-
creases monotonously with increasing distance from
the radar antenna. The absence of a wave structure
in the output image explains the low value of SSIM.
Nevertheless, Figs. 13b and 13d have different scales
of patterns. Hence, we suppose that the images,
reconstructed by our autoencoder, potentially contain
information about U10 speed, and, as a result, partial
information about the wind wave structure.

4.2. ResNet-50 Training and Evaluation

The details of the pretrained modified ResNet-50
(Subsection 3.4) training and evaluation are shown
in Table 4.

For the first 40 epochs with a nontrained convolu-
tional layer, the quality metric RMSE remains practi-
cally constant both on the training and the validation
datasets. Moreover, much higher validation RMSE

testifies to the fact that a fully-convolutional layer
learns inefficiently.

The start of the training of convolutional weights
strongly reduces the RMSE value on the validation
dataset from 2.348 m to 1.918 m at the end of train-
ing. The same quality metric on the training dataset
remains close to 1.8 m. In general, we suppose that
within this architecture, training reaches saturation
and is unable to improve the regression quality. This
point of view is also supported by the fact that the
quality on the testing dataset is comparable to the
validation dataset and worse than that on the training
dataset.

Unsurprisingly, the baseline model of the modi-
fied ResNet-50 without pretrained convolutional part
shows a better regression quality. RMSE without
pretraining is assessed as 0.393 m on the testing
dataset. This value is 5 times worse than that of

Table 4. Modified ResNet-50 training and evaluation

Epoch
RMSE, m

Training dataset Validation dataset

Convolutional part is frozen

2 1.787 2.341

20 1.780 2.355

40 1.786 2.348

Convolutional part is unfrozen

60 1.834 1.935

100 1.827 1.941

140 1.842 1.918

Testing dataset

1.927
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Fig. 13. Examples of autoencoder reconstruction of synthetic radar images with different U10 wind speeds: (a) 4 m/s input;
(b) 4 m/s reconstructed (RMSEAE = 0.510, SSIM = 0.034); (c) 12 m/s input; (d) 12 m/s reconstructed (RMSEAE =
0.689, SSIM = 0.042).

the pretrained model (Table 4). We attribute this to
the fact that although the autoencoder weights allow
for extracting some features connected with SWH,
they strongly distort the whole pattern of real radar
images. The frozen convolutional part interferes with
the extraction of the features of real radar images
necessary for SWH determination. Thus, due to this
distortion, the start of the training of the convolutional
part optimizes parameters less efficiently than it does
in the baseline model.

5. DISCUSSION

This study initially suggests that neural-network
regression methods are effective for SWH determi-
nation from radar images. However, in situ data
collection is expensive and is unable to provide diverse
sea wave conditions.

The generation of synthetic radar images solves
the problem of a dataset insufficiency. In addition,
the generation of different synthetic sea surface con-
ditions can simulate radar images with any hyper-
parameters necessary for the research. Synthetic
images expand the dataset making it more or less
uniform.

We propose a modified method of generating a
synthetic sea surface and, consequently, synthetic
radar images for the condition of a fully-developed

sea. We consider this method to be promising be-
cause it enables the use of different power spectra of
wind waves. The generated images are realistic for
visual perception.

We make experiments of the direct pretraining of
the autoencoder on a fully synthetic dataset. The
convolutional neural network ResNet-50, modified
for radar images, performs well in the task of SWH
determination, especially, for a low wind speed. To
expand generalization possibilities of this model, we
propose to train this model on real data with the
weights trained on a uniform synthetic dataset.

The results show that the autoencoder is unable
to resolve the harmonical structure of wind waves.
Based on it, we assume that MSE training loss, sen-
sitive to point-by-point distortions, smoothes images
and excludes small-scale features. On the contrary,
it is the small-scale structure that contains essential
information about wave lengths and heights. As a
result, the pretrained ResNet-50, losing wave infor-
mation, shows a worse regression quality than it was
initially supposed to.

6. CONCLUSIONS

In this study, we presented the method for pre-
training a convolutional artificial neural network
based on ResNet blocks using the simulated radar
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imagery of sea clutter generated under an assumption
of stationary well-established wind-induced ocean
waves. We presented the step-by-step algorithm for
generating sea clutter radar images using forward and
backward two-dimensional Fourier transforms under
the assumption of the rough sea surface spectrum
being the Pierson–Moskowitz spectrum parameter-
ized by wind speed only. We demonstrated that the
convolutional part of an artificial neural network per-
forming the SWH regression task may be pretrained
using simulated radar images. We then argue that the
quality metrics of the pretrained network in the SWH
regression task appears to be worse compared to the
network trained from the scratch using only in situ
target data for supervision.

We emphasize though that nonclassical contem-
porary methods of AI-based radar data processing
still remain effective and convenient. This group of
methods is radar-independent and easy to use. Yet
these AI-based models require proper learning.

The results of our study suggest solving several
problems regarding the proper use of synthetic sea
clutter images for the pretraining approach to become
effective. Therefore, the assessment of synthetic and
semi-synthetic data for SWH estimation is still a
topic of ongoing research.

We believe that the demonstrated performance
of synthetic data generation should motivate further
research towards the use of a variety of wave power
spectra and the improvement of optical effects. One
more direction of further research is searching for
suitable pretraining models, capable of extracting
useful features without loss of small-scale wave
characteristics. We are strongly convinced that
proper pretraining of a neural model may improve its
performance in the SWH regression task.
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